ON A UNIQUENESS THEOREM FOR THE FRANKLIN SYSTEM

K. A. NAVASARDYAN *
Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

In this paper we prove that there exist a nontrivial Franklin series and a sequence M_{n} such that the partial sums $S_{M_{n}}(x)$ of that series converge to 0 almost everywhere and $\lambda \cdot \operatorname{mes}\left\{x: \sup _{n}\left|S_{M_{n}}(x)\right|>\lambda\right\} \rightarrow 0$ as $\lambda \rightarrow+\infty$. This shows that the boundedness assumption of the ratio $\frac{M_{n+1}}{M_{n}}$, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.

MSC2010: 42C10.
Keywords: majorant of partial sums, Franklin system, uniqueness.
Introduction. The orthonormal Franklin system consists of piecewise linear and continuous functions. This system was constructed by Franklin [1] as the first example of a complete orthonormal system, which is a basis in the space of continuous functions on $[0,1]$. However, a more detailed study of this system began with the papers of Ciesielski [2, 3], where, in particular, the famous exponential estimates were obtained. Later, this system was studied by many authors. In order to formulate earlier, as well as new results, let's recall some definitions.

Let $n=2^{\mu}+v, \quad \mu \geq 0$, where $1 \leq v \leq 2^{\mu}$. Denote

$$
s_{n, i}=\left\{\begin{array}{ccc}
\frac{i}{2^{\mu+1}} & \text { for } \quad 0 \leq i \leq 2 v \\
\frac{i-v}{2^{\mu}} & \text { for } & 2 v<i \leq n
\end{array}\right.
$$

Let S_{n} denote the space of functions continuous and piecewise linear on $[0,1]$ with nodes $\left\{s_{n, i}\right\}_{i=0}^{n}$, i.e. $f \in S_{n}$ if $f \in C[0,1]$ and is linear on each closed interval $\left[s_{n, i-1}, s_{n, i}\right], i=1,2, \ldots, n$. It is clear, that $\operatorname{dim} S_{n}=n+1$ and the set $\left\{s_{n, i}\right\}_{i=0}^{n}$ is obtained by adding the point $s_{n, 2 v-1}$ to the set $\left\{s_{n-1, i}\right\}_{i=0}^{n-1}$. Therefore, there exists a unique function $f_{n} \in S_{n}$, which is orthogonal to $S_{n-1},\left\|f_{n}\right\|_{2}=1$ and $f_{n}\left(s_{n, 2 v-1}\right)>0$. Setting $f_{0}(x)=1, f_{1}(x)=\sqrt{3}(2 x-1), x \in[0,1]$, we obtain the orthonormal system $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$, which was defined equivalently by Franklin [1].

[^0]In a number of papers, uniqueness theorems for series in the Franklin system were considered. In particular in [4] the following theorem was proved.

TheoremA. For the series $\sum_{n=0}^{\infty} a_{n} f_{n}(x)$ to be a Fourier-Franklin series of an integrable function f, it is necessary and sufficient that this series converge almost everywhere (a.e.) to f and

$$
\liminf _{\lambda \rightarrow \infty}\left(\lambda \cdot \operatorname{mes}\left\{x: \sup _{N}\left|\sum_{n=0}^{N} a_{n} f_{n}(x)\right|>\lambda\right\}\right)=0
$$

Let d be a natural number and

$$
\begin{equation*}
\sum_{\mathbf{m} \in \mathbb{N}_{0}^{d}} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x}) \tag{1}
\end{equation*}
$$

be a multiple Franklin series, where $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{N}_{0}^{d}$ is a vector with nonnegative integer coordinates, $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d}$, and $f_{\mathbf{m}}(\mathbf{x})=f_{m_{1}}\left(x_{1}\right) \cdots f_{m_{d}}\left(x_{d}\right)$.

Denote by $\sigma_{n}(\mathbf{x})$ the n-th square partial sum of the series (1), i.e.

$$
\sigma_{n}(\mathbf{x})=\sum_{\mathbf{m}: m_{i} \leq n, i=1, \ldots, d} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x})
$$

The following theorem for multiple Franklin series was proved in [5].
Theoremb. If the sums $\sigma_{2^{n}}(\mathbf{x})$ converge in measure to an integrable function f and

$$
\liminf _{\lambda \rightarrow+\infty}\left(\lambda \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{2^{n}}(\mathbf{x})\right|>\lambda\right\}\right)=0
$$

then (1) is the Fourier-Franklin series of f.
The following theorem was proved in [6].
Theorem C. Let $\left\{M_{n}\right\}$ be an increasing sequence of natural numbers such that the ratio $\frac{M_{n+1}}{M_{n}}$ is bounded. If the sums $\sigma_{M_{n}}(\mathbf{x})$ converge in measure to a function f and for some sequence $\lambda_{k} \rightarrow+\infty$ it holds the condition:

$$
\lim _{k \rightarrow \infty}\left(\lambda_{k} \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{M_{n}}(\mathbf{x})\right|>\lambda_{k}\right\}\right)=0
$$

then for any $\mathbf{m} \in \mathbb{N}_{0}^{d}$

$$
a_{\mathbf{m}}=\lim _{k \rightarrow+\infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} f_{\mathbf{m}}(\mathbf{x}) d \mathbf{x}
$$

where $[f(\mathbf{x})]_{\lambda}=\left\{\begin{array}{lll}f(\mathbf{x}), & \text { if } & |f(\mathbf{x})| \leq \lambda, \\ 0, & \text { if } & |f(\mathbf{x})|>\lambda .\end{array}\right.$
Note that taking $M_{n}=2^{n}$ in the Theorem C we obtain the result, which was proved by Gevorkyan and Poghosyan in [7]. Other uniqueness theorems for Franklin system one can find in [8-10].

Similar problems for Haar series were considered in [11]. For Vilenkin system of bounded type and generalized Haar systems similar problems were considered in [12, 13] and for the general Vilenkin systems in [14].

In this paper we prove that in the Theorem C boundness condition on $\frac{M_{n+1}}{M_{n}}$ can not be omitted. The following theorem holds:

Theorem 1. There exist a Franklin series $\sum_{n=0}^{\infty} a_{n} f_{n}(x)$ with $a_{0}=1$ and an increasing sequence of natural numbers $\left\{M_{k}\right\}$ such that

$$
S_{M_{k}}(x):=\sum_{n=0}^{M_{k}} a_{n} f_{n}(x) \rightarrow 0 \quad \text { a.e. }
$$

and $\lim _{\lambda \rightarrow \infty}\left(\lambda \cdot \operatorname{mes}\left\{x \in[0,1]: \sup _{k}\left|S_{M_{k}}(x)\right|>\lambda\right\}\right)=0$.
Auxiliary Lemmas. Let \mathbb{N}_{0} be the set of all nonnegative integers. For any $n \in \mathbb{N}_{0}$ and $i \in\left\{0,1, \ldots, 2^{n}-1\right\}$ denote $\Delta_{n}^{(i)}:=\left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right)$ and

$$
h_{n}^{(i)}(x):=\left\{\begin{array}{rll}
1, & \text { if } & x \in \Delta_{n+1}^{(2 i)}, \tag{2}\\
-1, & \text { if } & x \in \Delta_{n+1}^{(2 i+1)}, \\
0, & \text { if } & x \notin \Delta_{n}^{(i)}
\end{array}\right.
$$

Suppose that $\left\{P_{n}\right\}$ is a sequence of functions of the form $P_{n}(x)=\sum_{m=1}^{k_{n}} h_{n}^{\left(i_{n m}\right)}(x)$, where $0 \leq i_{n 1}<i_{n 2}<\cdots<i_{n k_{n}}<2^{n}$, then the following proposition holds.

Lemmal. If g is a continuous function defined on $[0,1]$, then

$$
\lim _{n \rightarrow \infty}\left(g, P_{n}\right):=\lim _{n \rightarrow \infty} \int_{0}^{1} g(x) P_{n}(x) d x=0
$$

Proof. For any $n \in \mathbb{N}_{0}$ and $i \in\left\{0,1, \ldots, 2^{n}-1\right\}$ denote

$$
\alpha_{n}^{(i)}:=\frac{1}{\operatorname{mes}\left(\Delta_{n}^{(i)}\right)} \int_{\Delta_{n}^{(i)}} g(t) d t
$$

and consider the step function $g_{n}(x):=\sum_{i=0}^{2^{n}-1} \alpha_{n}^{(i)} \mathbb{I}_{\Delta_{n}^{(i)}}(x)$, where $\mathbb{I}_{\Delta_{n}^{(i)}}(x)$ is the characteristic function of the interval $\Delta_{n}^{(i)}$. It is clear that $\left(g_{n}, P_{n}\right)=0$ for any $n \in \mathbb{N}$. Therefore, according to (2) and the definition of P_{n}, we obtain that

$$
\left|\left(g, P_{n}\right)\right|=\left|\left(g-g_{n}, P_{n}\right)\right| \leq \sup _{x}\left|g(x)-g_{n}(x)\right|,
$$

which completes the proof of Lemma 11 since $g_{n}(x)$ converges to $g(x)$ uniformly as $n \rightarrow \infty$.

For any integrable function F denote by $c_{n}(F)$ the n-th Fourier-Franklin coefficient of F.

Lemma 2. Let $\Delta:=\left[\frac{s}{2^{r}}, \frac{s+1}{2^{r}}\right)$ be a dyadic interval. For any natural numbers M, k and for each positive number α there exist a step function H and a set $E \subset \Delta$ such that

1. $H(x)+\mathbb{I}_{\Delta}(x)=\left\{\begin{array}{ccc}2^{k}, & \text { if } & x \in E, \\ 0, & \text { if } & x \notin E ;\end{array}\right.$
2. E is a union of dyadic intervals and $\operatorname{mes}(E)=\frac{\operatorname{mes}(\Delta)}{2^{k}}$;
3. $c_{0}(H)=0 \quad$ and $\sum_{n=0}^{M}\left|c_{n}(H) f_{n}(x)\right|<\alpha \quad \forall x \in[0,1]$.

Proof. In view of Lemma 1 one can choose a natural number $m>r$ such that for the function

$$
H(x)=H_{m}(x):=\sum_{i=0}^{k-1} 2^{i} \sum_{j=0}^{2^{m-r}-1} h_{m+i}^{\left(2^{i}\left(2^{m-r}+j\right)\right)}(x)
$$

the following inequality holds

$$
\sum_{n=0}^{M}\left|c_{n}(H) f_{n}(x)\right|<\alpha \quad \forall x \in[0,1]
$$

It is easily seen from (2), that for any natural $p, \quad 0 \leq p<2^{m}$,

$$
\sum_{i=0}^{k-1} 2^{i} h_{m+i}^{\left(2^{i} p\right)}(x)=\left\{\begin{array}{lll}
2^{k}-1, & \text { if } & x \in\left[\frac{p}{2^{m}}, \frac{p}{2^{m}}+\frac{1}{2^{m+k}}\right) \\
-1, & \text { if } & x \in\left[\frac{p}{2^{m}}+\frac{1}{2^{m+k}}, \frac{p+1}{2^{m}}\right) \\
0, & \text { if } & x \notin\left[\frac{p}{2^{m}}, \frac{p+1}{2^{m}}\right)
\end{array}\right.
$$

Therefore, setting

$$
E:=\bigcup_{j=0}^{2^{m-r}-1}\left[\frac{s 2^{m-r}+j}{2^{m}}, \frac{s 2^{m-r}+j}{2^{m}}+\frac{1}{2^{m+k}}\right)
$$

we get that

$$
H(x)+\mathbb{I}_{\Delta}(x)=\left\{\begin{array}{ccc}
2^{k}, & \text { if } & x \in E, \\
0, & \text { if } & x \notin E
\end{array} \quad \text { for any } \quad x \in[0,1] .\right.
$$

It is clear also that $\operatorname{mes}(E)=\frac{\operatorname{mes}(\Delta)}{2^{k}}$ and $c_{0}(H)=0$.
Lemma 3. Let g be a nonnegative step function defined on $[0,1)$ and let $E:=\operatorname{supp}(g)$ be a finite union of dyadic intervals. Then for any natural number M and for any positive numbers α and ε there exists a step function P such that:

1) $\operatorname{supp}(P) \subset E$;
2) $\operatorname{mes}(\operatorname{supp}(P+g))<\alpha$;
3) $\min _{x}\{P(x)+g(x): P(x)+g(x) \neq 0\}>4 \max _{x \in[0,1)} g(x)$;
4) $\lambda \cdot \operatorname{mes}\{x: P(x)+g(x)>\lambda\}<\varepsilon$ for any positive number λ;
5) $c_{0}(P)=0$ and $\sum_{n=0}^{M}\left|c_{n}(P) f_{n}(x)\right|<\alpha$ for all $x \in[0,1]$;
6) for any $\delta>0$ there exists a set $G \subset[0,1]$ such that $\operatorname{mes}(G)>1-\delta$ and the series $\sum_{n=0}^{\infty} c_{n}(P+g) f_{n}(x)$ uniformly converges to $P+g$ on the set G;
7) there exists $M_{1} \in \mathbb{N}$ such that $\sum_{n=M_{1}}^{\infty}\left|c_{n}(P+g) f_{n}(x)\right|<\alpha \quad \forall x \in G$.
Proof. Let $\alpha, \boldsymbol{\varepsilon}$ and δ be positive numbers. Suppose that $E=\operatorname{supp}(g)$ is a finite union of dyadic intervals, and let h be the length of the smallest of them. Denote $\gamma:=\max _{x} g(x)$ and fix a natural number d satisfying to the inequality

$$
\begin{equation*}
\frac{1}{2^{d}}<\min \left\{\alpha, \frac{h}{2}, \frac{\varepsilon}{2 \gamma}\right\} \tag{3}
\end{equation*}
$$

Let us represent E in the form $E=\bigcup_{i=1}^{m} \Delta_{i}$, where $\Delta_{i}, i=1,2, \ldots, m$, are disjoint dyadic intervals with length $\operatorname{mes}\left(\Delta_{i}\right)=\frac{1}{2^{d}}$.

Note, that g is constant on each interval $\Delta_{i}, i=1,2, \ldots, m$. Denote by γ_{i} the value of g on the interval Δ_{i}. Let's successively choose natural numbers $k_{1}<k_{2}<\cdots<k_{m}$, satisfying the inequalities:

$$
\begin{equation*}
2^{k_{1}} \gamma_{1}>4 \gamma, \quad 2^{k_{i}} \gamma_{i}>2^{k_{i-1}} \gamma_{i-1}, \quad i=2,3, \ldots, m . \tag{4}
\end{equation*}
$$

Applying Lemma 2 to each Δ_{i}, we obtain step functions $H_{1}, H_{2}, \ldots, H_{m}$ and sets (unions of dyadic intervals) $E_{1}, E_{2}, \ldots, E_{m}$ with properties:

$$
\begin{gather*}
H_{i}(x)+\mathbb{I}_{\Delta_{i}}(x)=\left\{\begin{array}{ccc}
2^{k_{i}}, & \text { if } & x \in E_{i}, \\
0, & \text { if } & x \notin E_{i}, \\
\operatorname{mes}\left(E_{i}\right)=\frac{\operatorname{mes}\left(\Delta_{i}\right)}{2^{k_{i}}}=\frac{1}{2^{d+k_{i}}}, \\
c_{0}\left(H_{i}\right)=0, \quad \sum_{n=0}^{M}\left|c_{n}\left(H_{i}\right) f_{n}(x)\right|<\frac{\alpha}{2^{i} \gamma_{i}} \quad \forall x \in[0,1] .
\end{array} . . \begin{array}{l}
\end{array}\right) . \tag{5}
\end{gather*}
$$

Denote

$$
\begin{equation*}
P(x):=\sum_{i=1}^{m} \gamma_{i} H_{i}(x) . \tag{8}
\end{equation*}
$$

It is clear (see (5)) that

$$
P(x)+g(x)=\left\{\begin{array}{lll}
\gamma_{i} 2^{k_{i}}, & \text { if } & x \in E_{i}, \quad i=1,2, \ldots, m, \tag{9}\\
0, & \text { if } & x \notin \bigcup_{i=1}^{m} E_{i} .
\end{array}\right.
$$

From (3), (6) and (9) we immediately obtain that

$$
\operatorname{mes}(\operatorname{supp}(P+g))=\operatorname{mes}\left(\bigcup_{i=1}^{m} E_{i}\right)=\sum_{i=1}^{m} \frac{1}{2^{d+k_{i}}}<\frac{2}{2^{d+k_{1}}}<\frac{1}{2^{d}}<\alpha .
$$

Thus, $P(x)$ satisfies assertions 1)-3) of Lemma 3. The assertion 5) follows from (7) and (8).

Let λ be a positive number. If $\lambda<\gamma_{m} 2^{k_{m}}$, then, putting $s:=\min _{m}\left\{i: \lambda<\gamma_{i} 2^{k_{i}}\right\}$ and using (4) and (9), we get $\{x \in[0,1]: P(x)+g(x)>\lambda\}=\bigcup_{i=s} E_{i}$. Therefore, according to (3) and (6), we obtain

$$
\lambda \cdot \operatorname{mes}\{x \in[0,1]: P(x)+g(x)>\lambda\}<\lambda \sum_{i=s}^{m} \frac{1}{2^{d+k_{i}}}<\frac{2 \gamma_{s}}{2^{d}} \leq \frac{2 \gamma}{2^{d}}<\varepsilon .
$$

In the case when $\lambda \geq \gamma_{m} 2^{k_{m}}$, the assertion 4) is obvious, since $\{x: P(x)+g(x)>\lambda\}=\emptyset$ (see (4) and (9)).

Assertions 6) and 7) of the Lemma 3 follow from the results obtained in [15], where in particular the following theorem was proved:

TheoremD. (Theorem $3.2[15])$. Let $\varphi, \psi \in L_{1}[0,1]$. If $\varphi(x)=\psi(x)$ when $x \in[\alpha, \beta]$, then for any interval $\left[\alpha^{\prime}, \beta^{\prime}\right] \subset(\alpha, \beta)$ the series

$$
\sum_{n=0}^{\infty}\left|c_{n}(\varphi)-c_{n}(\psi)\right|\left|f_{n}(x)\right|
$$

converges uniformly on $\left[\alpha^{\prime}, \beta^{\prime}\right]$.
Proof of Theorem 1. Let g_{0} be the characteristic function of $E_{0}:=[0,1]$ and $M_{0}:=1$. Successively applying the Lemma 3 for $g=g_{k-1}, M=M_{k-1}$ and $E=E_{k-1}$, for any natural number k we obtain a step function P_{k}, a natural number M_{k} and a set $G_{k} \subset[0,1]$ with properties

$$
\begin{gather*}
\operatorname{supp}\left(P_{k}\right) \subset E_{k-1}, \tag{10}\\
\min _{x}\left\{g_{k}(x): g_{k}(x) \neq 0\right\}>4 \max _{x} g_{k-1}(x), \quad \text { where } \quad g_{k}(x):=P_{k}(x)+g_{k-1}(x), \tag{11}\\
\operatorname{mes}\left(E_{k}\right)<\frac{1}{2^{k+2}}, \quad \text { where } \quad E_{k}:=\operatorname{supp}\left(g_{k}\right), \tag{12}\\
\lambda \cdot \operatorname{mes}\left\{x: g_{k}(x)>\lambda\right\}<\frac{1}{2^{k}}, \quad \forall \lambda>0, \tag{13}\\
\sum_{n=0}^{M_{k-1}}\left|c_{n}\left(P_{k}\right) f_{n}(x)\right|<\frac{1}{2^{k+2}}, \quad \forall x \in[0,1] \text { and } \quad c_{0}\left(P_{k}\right)=0, \tag{14}\\
\operatorname{mes}\left(G_{k}\right)>1-\frac{1}{2^{k+2} \Gamma_{k}}, \quad \text { where } \quad \Gamma_{k}:=\max _{x} g_{k}(x), \tag{15}\\
\sum_{n=0}^{\infty} c_{n}\left(g_{k}\right) f_{n}(x) \quad \text { uniformly converges to } \quad g_{k} \text { on the set } G_{k}, \tag{16}\\
\sum_{n=M_{k}}^{\infty}\left|c_{n}\left(g_{k}\right) f_{n}(x)\right|<\frac{1}{2^{k+2}} \quad \forall \quad x \in G_{k} . \tag{17}
\end{gather*}
$$

Thus we obtain sequences $\left\{P_{k}\right\},\left\{g_{k}\right\},\left\{M_{k}\right\}$ and $\left\{G_{k}\right\}$ satisfying (10)-17).
Set

$$
\begin{equation*}
X:=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} X_{k}, \quad \text { where } \quad X_{k}:=G_{k} \cap E_{k}^{c}, \quad k=1,2, \ldots \tag{18}
\end{equation*}
$$

According to (12) and (15), we get that $\operatorname{mes}\left(X_{k}\right)>1-\frac{1}{2^{k+1}}, k=1,2, \ldots$, hence, in view of 18$)$, we conclude that $\operatorname{mes}(X)=1$.

It is easily seen from (14) that for any fixed $n \in \mathbb{N}$, if k is sufficiently large, then $\left|c_{n}\left(P_{k}\right)\right|<\frac{1}{2^{k+2}}$. Therefore for any natural n the series $\sum_{k=1}^{\infty} c_{n}\left(P_{k}\right)$ absolutely converges. Now we denote $A_{0}:=1, A_{n}:=\sum_{k=1}^{\infty} c_{n}\left(P_{k}\right), n=1,2, \ldots$, and prove that
the partial sums $S_{M_{q}}(x)$ of the series $\sum_{n=0}^{\infty} A_{n} f_{n}(x)$ converge to 0 at any point $x \in X$, as $q \rightarrow \infty$. First we observe from the definition of $g_{k}($ see (11) that for any $x \in[0,1]$

$$
\begin{equation*}
S_{M_{q}}(x)=\sum_{n=0}^{M_{q}} A_{n} f_{n}(x)=\sum_{n=0}^{M_{q}} c_{n}\left(g_{q}\right) f_{n}(x)+\sum_{n=1}^{M_{q}}\left(\sum_{k=q+1}^{\infty} c_{n}\left(P_{k}\right)\right) f_{n}(x) \tag{19}
\end{equation*}
$$

In view of (14), we have that for any $x \in[0,1]$

$$
\begin{equation*}
\left|\sum_{n=1}^{M_{q}}\left(\sum_{k=q+1}^{\infty} c_{n}\left(P_{k}\right)\right) f_{n}(x)\right| \leq \sum_{k=q+1}^{\infty} \sum_{n=1}^{M_{q}}\left|c_{n}\left(P_{k}\right) f_{n}(x)\right| \leq \sum_{k=q+1}^{\infty} \frac{1}{2^{k+2}} \leq \frac{1}{2^{q+1}} . \tag{20}
\end{equation*}
$$

Therefore, according to (16), (17), (19) and (20), we obtain that for any $x \in G_{q}$

$$
\begin{equation*}
\left|S_{M_{q}}(x)-g_{q}(x)\right| \leq \sum_{n=M_{q}}^{\infty}\left|c_{n}\left(g_{q}\right) f_{n}(x)\right|+\frac{1}{2^{q+1}} \leq \frac{1}{2^{q+2}}+\frac{1}{2^{q+1}}<\frac{1}{2^{q}} \tag{21}
\end{equation*}
$$

Let $x \in X$. Then there exists a natural number n_{0} such that $x \in X_{q}=G_{q} \cap E_{q}^{c}$ for all $q>n_{0}$. Hence, using also (12), we get that $\left|S_{M_{q}}(x)\right|<\frac{1}{2^{q}}$ for any $q>n_{0}$, which means that

$$
S_{M_{q}}(x) \rightarrow 0 \quad \forall x \in X
$$

Let λ be a positive number grater than Γ_{2}. Then $4 \Gamma_{q-1} \leq \lambda<4 \Gamma_{q}$ for some natural number q.

Note that if $k<q$, then $g_{k}(x) \leq \Gamma_{k} \leq \Gamma_{q-1}$ for all $x \in[0,1]$. Therefore, according to the famous result obtained in [3], we get that

$$
\left|\sum_{n=0}^{M_{k}} c_{n}\left(g_{k}\right) f_{n}(x)\right| \leq 3 \Gamma_{q-1} \quad \forall x \in[0,1]
$$

Hence from (19) and (20) we observe that

$$
\left\{x:\left|S_{M_{k}}(x)\right|>\lambda\right\}=\emptyset \quad \forall k<q
$$

and, therefore,

$$
\begin{equation*}
\left\{x: \sup _{k}\left|S_{M_{k}}(x)\right|>\lambda\right\} \subset \bigcup_{k=q}^{\infty}\left\{x:\left|S_{M_{k}}(x)\right|>\lambda\right\} \tag{22}
\end{equation*}
$$

Combining (22) with (21), (15), (13), we obtain that

$$
\begin{gathered}
\lambda \cdot \operatorname{mes}\left\{x: \sup _{k}\left|S_{M_{k}}(x)\right|>\lambda\right\} \leq \lambda \cdot \sum_{k=q}^{\infty} \operatorname{mes}\left\{x:\left|S_{M_{k}}(x)\right|>\lambda\right\} \leq \\
\leq \sum_{k=q}^{\infty} \lambda\left(\operatorname{mes}\left\{x: g_{k}(x)>\frac{\lambda}{2}\right\}+\operatorname{mes}\left(G_{k}^{c}\right)\right) \leq \sum_{k=q}^{\infty}\left(\frac{2}{2^{k}}+\lambda \frac{1}{2^{k+2} \Gamma_{k}}\right) \leq \frac{5}{2^{q}}
\end{gathered}
$$

which completes the proof.

REFERENCES

1. Franklin Ph. A Set of Continuous Orthogonal Functions. // Math. Ann., 1928, v. 100, p. 522-528.
2. Ciesielski Z. Properties of the Orthonormal Franklin System. // Studia Math., 1963, v. 23, p. 141-157.
3. Ciesielski Z. Properties of the Orthonormal Franklin System. II. // Studia Math., 1966, v. 27, p. 289-323.
4. Gevorkyan G.G. Uniqueness of Franklin Series. // Math. Zametki, 1989, v. 46, № 2, p. 51-58 (in Russian).
5. Gevorkyan G.G. Uniqueness Theorem for Multiple Franklin Series. // Math. Zametki, 2017, v. 101, № 2, p. 199-210 (in Russian).
6. Navasardyan K.A. Uniqueness Theorems for Multiple Franklin Series. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, № 3, p. 241-249.
7. Gevorkyan G.G., Poghosyan M.P. On Recovering of Coefficients of a Franklin Series with the "Good" Majorant of Partial Sums. // Izv. NAN Armenii. Ser. Math., 2017, v. 52, № 5, p. 254-263.
8. Gevorkyan G.G. Majorants and Uniqueness of Series in the Franklin System. // Math. Zametki, 1996, v. 59, № 4, p. 521-545 (in Russian).
9. Gevorkyan G.G. Uniqueness Theorems for Series in the Franklin System. // Math. Zametki, 2015, v. 98, № 5, p. 786-789 (in Russian).
10. Poghosyan M.P. Uniqueness of Series by General Franklin Systems. // Izv. NAN Armenii. Ser. Math., 2000, v. 35, № 4, p. 77-83 (in Russian).
11. Gevorkyan G.G., Navasardyan K.A. On Haar Series of A-Integrable Functions. // Izv. NAN Armenii. Matematika, 2017, v. 52, № 3, p. 30-45 (in Russian).
12. Kostin V.V. Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions. // Math. Zametki, 2003, v. 73, № 5, p. 704-723 (in Russian).
13. Kostin V.V. Generalization of the Balashov Theorem on Subseries of the Fourier-Haar Series. // Math. Zametki, 2004, v. 76, № 5, p. 740-747 (in Russian).
14. Gevorkyan G.G., Navasardyan K.A. On a Summation Method for Series with Respect to Vilenkin and Haar Systems. // Reports NAS of Armenia, 2017, v. 117, № 1, p. 20-25 (in Russian).
15. Gevorkyan G.G. On Absolute Convergence of Series by General Franklin System. // Izv. NAN Armenii. Matematika, 2014, v. 49, № 2, p. 3-24, (in Russian).

[^0]: * E-mail: knavasard@ysu.am

