## UNIQUENESS THEOREMS FOR MULTIPLE FRANKLIN SERIES

K. A. NAVASARDYAN *

Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

It is proved, that if the square partial sums $\sigma_{q_{n}}(\mathbf{x})$ of a multiple Franklin series converge in measure to a function $f$, the ratio $\frac{q_{n+1}}{q_{n}}$ is bounded and the majorant of partial sums satisfies to a necessary condition, then the coefficients of the series are restored by the function $f$.

MSC2010: 42C10.
Keywords: majorant of partial sums, $A$-integral, uniqueness.
Introduction. The orthonormal Franklin system consists of piecewise linear and continuous functions. This system was constructed by Franklin [1] as the first example of a complete orthonormal system, which is a basis in the space of continuous functions on $[0,1]$. In order to formulate earlier, as well as new results, let's recall some definitions.

Let $n=2^{\mu}+v, \mu \geq 0$, where $1 \leq v \leq 2^{\mu}$. Denote

$$
s_{n, i}=\left\{\begin{array}{cl}
\frac{i}{2^{\mu+1}} & \text { for } 0 \leq i \leq 2 v  \tag{1}\\
\frac{i-v}{2^{\mu}} & \text { for } 2 v<i \leq n
\end{array}\right.
$$

Let $S_{n}$ denote the space of functions continuous and piecewise linear on $[0,1]$ with nodes $\left\{s_{n, i}\right\}_{i=0}^{n}$, i.e. $f \in S_{n}$, if $f \in C[0,1]$, is linear on each closed interval $\left[s_{n, i-1}, s_{n, i}\right]$, $i=1,2, \ldots, n$. It is clear, that $\operatorname{dim} S_{n}=n+1$ and the set $\left\{s_{n, i}\right\}_{i=0}^{n}$ is obtained by adding the point $s_{n, 2 v-1}$ to the set $\left\{s_{n-1, i}\right\}_{i=0}^{n-1}$. Therefore, there exists a unique function $f_{n} \in S_{n}$, which is orthogonal to $S_{n-1},\left\|f_{n}\right\|_{2}=1$ and $f_{n}\left(s_{n, 2 v-1}\right)>0$. Setting $f_{0}(x)=1$, $f_{1}(x)=\sqrt{3}(2 x-1), x \in[0,1]$, we obtain the orthonormal system $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$, which was defined equivalently by Franklin [1].

In this paper we will consider multiple series by Franklin system.
Let $d$ be a natural number. Consider multiple Franklin series

$$
\begin{equation*}
\sum_{\mathbf{m} \in \mathbb{N}_{0}^{d}} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x}) \tag{2}
\end{equation*}
$$

[^0]where $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{N}_{0}^{d}$ is a vector with non-negative integer coordinates, $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in[0,1]^{d}$ and $f_{\mathbf{m}}(\mathbf{x})=f_{m_{1}}\left(x_{1}\right) \cdots f_{m_{d}}\left(x_{d}\right)$.

Denote by $\sigma_{n}(\mathbf{x})$ the $n$-th square partial sum of the series (2), i.e.

$$
\begin{equation*}
\sigma_{n}(\mathbf{x})=\sum_{\mathbf{m}: m_{i} \leq n, i=1, \ldots, d} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x}) \tag{3}
\end{equation*}
$$

where $\mathbf{m}=\left(m_{1}, \ldots, m_{d}\right)$.
The following theorems were proved by Gevorkyan and Poghosyan.
TheoremA.[2]. If the sums $\sigma_{2^{n}}(\mathbf{x})$ converge in measure to an integrable function $f$ and

$$
\liminf _{\lambda \rightarrow+\infty}\left(\lambda \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{2^{n}}(\mathbf{x})\right|>\lambda\right\}\right)=0
$$

then the series (2) is the Fourier-Franklin series of $f$.
Theorem B. [3] If the sums $\sigma_{2^{n}}(\mathbf{x})$ converge in measure to a function $f$ and

$$
\lim _{k \rightarrow \infty}\left(\lambda_{k} \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{2^{n}}(\mathbf{x})\right|>\lambda_{k}\right\}\right)=0
$$

for some sequence $\lambda_{k} \rightarrow+\infty$, then for any $\mathbf{m} \in \mathbb{N}_{0}^{d}$

$$
a_{\mathbf{m}}=\lim _{k \rightarrow+\infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} f_{\mathbf{m}}(\mathbf{x}) d \mathbf{x}
$$

where

$$
[f(\mathbf{x})]_{\lambda}= \begin{cases}f(\mathbf{x}), & \text { if } \quad|f(\mathbf{x})| \leq \lambda \\ 0, & \text { if }|f(\mathbf{x})|>\lambda\end{cases}
$$

In this paper we will prove, that in the Theorem B instead of the partial sums $\sigma_{2^{n}}(\mathbf{x})$ one can take square partial sums $\sigma_{q_{n}}(\mathbf{x})$, where $q_{n}$ is any increasing sequence of natural numbers, for which the ratio $\frac{q_{n+1}}{q_{n}}$ is bounded. The following theorem holds.

Theorem 1. Let $\left\{q_{n}\right\}$ be an increasing sequence of natural numbers such that the ratio $\frac{q_{n+1}}{q_{n}}$ is bounded. If the sums $\sigma_{q_{n}}(\mathbf{x})$ converge in measure to a function $f$ and there exists a sequence $\lambda_{k} \rightarrow+\infty$ that the following condition holds:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\lambda_{k} \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{q_{n}}(\mathbf{x})\right|>\lambda_{k}\right\}\right)=0 \tag{4}
\end{equation*}
$$

then for any $\mathbf{m} \in \mathbb{N}_{0}^{d}$

$$
\begin{equation*}
a_{\mathbf{m}}=\lim _{k \rightarrow+\infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} f_{\mathbf{m}}(\mathbf{x}) d \mathbf{x} \tag{5}
\end{equation*}
$$

Recall, that the function $f$ is called $A$-integrable on a set $G$, if $\lim _{\lambda \rightarrow+\infty} \lambda \cdot \operatorname{mes}\{x \in G:|f(x)|>\lambda\}=0$ and the following limit exists:

$$
\lim _{\lambda \rightarrow+\infty} \int_{G}[f(x)]_{\lambda} d x=:(A) \int_{G} f(x) d x
$$

Notice that the next two theorems are immediate corollaries of the Theorem 1 .

Theorem 2. Let $\left\{q_{n}\right\}$ be an increasing sequence of natural numbers such that the ratio $\frac{q_{n+1}}{q_{n}}$ is bounded. If the sums $\sigma_{q_{n}}(\mathbf{x})$ converge in measure to a function $f$ and

$$
\lim _{\lambda \rightarrow \infty}\left(\lambda \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: \sup _{n}\left|\sigma_{q_{n}}(\mathbf{x})\right|>\lambda\right\}\right)=0
$$

then all functions $f(\mathbf{x}) f_{\mathbf{m}}(\mathbf{x}), \mathbf{m} \in \mathbb{N}_{0}^{d}$, are $A$-integrable and

$$
a_{\mathbf{m}}=(A) \int_{[0,1]^{d}} f(\mathbf{x}) f_{\mathbf{m}}(\mathbf{x}) d \mathbf{x}, \quad \mathbf{m} \in \mathbb{N}_{0}^{d}
$$

Theorem 3. Let $\left\{q_{n}\right\}$ be an increasing sequence of natural numbers such that the ratio $\frac{q_{n+1}}{q_{n}}$ is bounded. If the sums $\sigma_{q_{n}}(\mathbf{x})$ converge in measure to a function $f \in L[0,1]^{d}$ and for some sequence $\lambda_{k} \rightarrow+\infty$ the condition (4) holds, then (2) is the Fourier-Franklin series of $f$.

Not that similar questions for series by Franklin system and generlized Franklin system were considered in [4-7].

In [8] for Haar series analogous theorems to Theorems $1+3$ are proved.
Similar problems for Vilenkin and generalized Haar systems were considered in [9] and [10], for systems generated by a bounded sequence $\left\{p_{k}\right\}$ and in [11] for general case.

Proof of Theorems. Let $\left\{q_{n}\right\}$ be an increasing sequence of natural numbers and $M$ be a number satisfying the inequality

$$
\begin{equation*}
\frac{q_{n+1}}{q_{n}} \leq M \text { for all } n \in \mathbb{N} \tag{6}
\end{equation*}
$$

Denote $S^{*}(\mathbf{x}):=\sup _{n}\left|\sigma_{q_{n}}(\mathbf{x})\right|$ and suppose that for the sequence $\lambda \nearrow+\infty$ the following statement holds:

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left(\lambda_{k} \cdot \operatorname{mes}\left\{\mathbf{x} \in[0,1]^{d}: S^{*}(\mathbf{x})>\lambda_{k}\right\}\right)=0 \tag{7}
\end{equation*}
$$

Let $\left\{s_{n, i}\right\}_{i=0}^{n}$ be the points given in (1), $s_{n,-1}=0$ and $s_{n, n+1}=1$. For any $n$ and $i \in\{0,1, \ldots, n\}$ denote $\delta_{i}^{n}:=\left(s_{n, i-1}, s_{n, i+1}\right)$. Let define the function $B_{i}^{n}(x)$ as follows. It is linear on intervals $\left[s_{n, j-1}, s_{n, j}\right], j=1,2, \ldots, n$, and

$$
B_{i}^{n}\left(s_{n, j}\right)=\left\{\begin{array}{ll}
1, & \text { if } \quad i=j, \\
0, & \text { if } \quad i \neq j
\end{array} \quad j=0,1, \ldots, n\right.
$$

For any natural $v$ we set $\mathbb{N}_{v}^{d}:=\left\{0,1, \ldots, q_{v}\right\}^{d}$. It is clear that

$$
\sigma_{q_{v}}(\mathbf{x})=\sum_{\mathbf{m} \in \mathbb{N}_{v}^{d}} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x})
$$

For any $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{d}\right) \in \mathbb{N}_{v}^{d}$ denote

$$
\begin{gather*}
\Delta_{\mathbf{j}}^{v}:=\delta_{j_{1}}^{q_{v}} \times \delta_{j_{2}}^{q_{v}} \times \cdots \times \delta_{j_{d}}^{q_{v}},  \tag{8}\\
F_{\mathbf{j}}^{v}(\mathbf{x}):=B_{j_{1}}^{q_{v}}\left(x_{1}\right) \cdot B_{j_{2}}^{q_{v}}\left(x_{2}\right) \cdot \ldots \cdot B_{j_{d}}^{q_{v}}\left(x_{d}\right) .
\end{gather*}
$$

$\operatorname{Obviously} \operatorname{supp}\left(F_{\mathbf{j}}^{v}\right)=\overline{\Delta_{\mathbf{j}}^{v}}$ and

$$
\begin{equation*}
\left(\frac{1}{2 q_{v}}\right)^{d} \leq \operatorname{mes}\left(\Delta_{\mathbf{j}}^{v}\right) \leq\left(\frac{4}{q_{v}}\right)^{d} \tag{9}
\end{equation*}
$$

It follows from the definition of functions $B_{i}^{n}$, that $\sum_{i=0}^{n} B_{i}^{n}(x)=1$ for all $x \in[0,1]$, therefore,

$$
\sum_{\mathbf{j} \in \mathbb{N}_{v}^{d}} F_{\mathbf{j}}^{v}(\mathbf{x})=1 \quad \text { for all } \quad \mathbf{x} \in[0,1]^{d}
$$

Let us notice that

$$
\int_{[0,1]^{d}} F_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x}=\int_{\Delta_{\mathbf{j}}^{v}} F_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x}=\prod_{i=1}^{d} \int_{\delta_{j_{i}}^{q^{v}}} F_{j_{i}}^{q_{v}}\left(x_{i}\right) d x_{i}=\frac{\operatorname{mes}\left(\Delta_{\mathbf{j}}^{v}\right)}{2^{d}}
$$

Therefore, by denoting

$$
M_{\mathbf{j}}^{v}(\mathbf{x}):=\frac{2^{d}}{\operatorname{mes}\left(\Delta_{\mathbf{j}}^{v}\right)^{v}} F_{\mathbf{j}}^{v}(\mathbf{x})
$$

we obtain (in view of (9)) that

$$
\begin{equation*}
\int_{[0,1]^{d}} M_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x}=1 \quad \text { and } \quad\left|M_{\mathbf{j}}^{v}(\mathbf{x})\right| \leq\left(4 q_{v}\right)^{d}, \quad v \in \mathbb{N}, \quad \mathbf{j} \in \mathbb{N}_{v}^{d} \tag{10}
\end{equation*}
$$

It is clear that the functions $\left\{M_{\mathbf{j}}^{v}\right\}_{\mathbf{j} \in \mathbb{N}_{v}^{d}}$ are basis in the space

$$
S_{v}:=\left\{\sum_{\mathbf{m} \in \mathbb{N}_{v}^{d}} a_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{x}): a_{\mathbf{m}} \in \mathbb{R}\right\}
$$

The following lemmas were proved in [2].
Lemma 1. Let $F$ be a function, which is defined on $\Delta=\left[a_{1}, b_{1}\right] \times \cdots \times$ $\left[a_{d}, b_{d}\right], d \in \mathbb{N}$, and is linear with respect to each variable. If $L=\max _{t \in \Delta}|F(t)|$, then

$$
\operatorname{mes}\left\{t \in \Delta:|F(t)| \geq \frac{L}{2^{d}}\right\} \geq \frac{\operatorname{mes}(\Delta)}{3^{d}}
$$

Lemma 2. For any $M_{\mathbf{j}_{0}}^{v_{0}}$ and $v>v_{0}$ there exist numbers $\alpha_{\mathbf{j}}$ such that

$$
M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x})=\sum_{\mathbf{j} \in \mathbb{N}_{V}^{d}} \alpha_{\mathbf{j}} M_{\mathbf{j}}^{v}(\mathbf{x})
$$

where

$$
\sum_{\mathbf{j} \in \mathbb{N}_{v}^{d}} \alpha_{\mathbf{j}}=1, \quad \alpha_{\mathbf{j}} \geq 0 \quad \text { and } \quad \alpha_{\mathbf{j}}=0 \quad \text { if } \quad \Delta_{\mathbf{j}}^{v} \not \subset \Delta_{\mathbf{j}_{0}}^{v_{0}}
$$

Although the Lemma 2] in [2] was proved for $q_{v}=2^{v}$, obviously the same proof is true in general case, also.

Now suppose that the statements (6) and (7) hold and the sums $\sigma_{q_{v}}(\mathbf{x})$ converge in measure to a function $f$. First let's prove that for any $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{N}_{0}^{d}$ and $\mathbf{j}_{0} \in \mathbb{N}_{v_{0}}^{d}$, for which $\max _{1 \leq i \leq d}\left\{m_{i}\right\} \leq q_{v_{0}}$, the following statement is true:

$$
\begin{equation*}
\int_{[0,1]^{d}} \sigma_{q_{v_{0}}}(\mathbf{x}) M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x}) d \mathbf{x}=\lim _{k \rightarrow+\infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x}) d \mathbf{x} . \tag{11}
\end{equation*}
$$

For any $k \in \mathbb{N}$ denote

$$
E_{k}:=\left\{\mathbf{x} \in \operatorname{supp}\left(M_{\mathbf{j}_{0}}^{v_{0}}\right)=\overline{\Delta_{\mathbf{j}_{0}}^{v_{0}}}: S^{*}(\mathbf{x})>\lambda_{k}\right\}
$$

Let $\varepsilon$ be a positive number. In view of (7), one can take the natural number $k_{0}$ such that the following inequalities hold:

$$
\begin{gather*}
\left(4^{7} q_{v_{0}} M\right)^{d} \lambda_{k} \cdot \operatorname{mes}\left(E_{k}\right)<\varepsilon, \quad \text { when } \quad k \geq k_{0}  \tag{12}\\
\operatorname{mes}\left(E_{k}\right)<\left(4^{4} M\right)^{-d} \operatorname{mes}\left(\Delta_{\mathbf{j}_{0}}^{v_{0}}\right), \quad \text { when } \quad k \geq k_{0} \tag{13}
\end{gather*}
$$

Suppose $v \geq v_{0}$. We set

$$
\begin{equation*}
\Omega_{v}:=\left\{A: A=\left(s_{q_{v}, j_{1}-1}, s_{q_{v}, j_{1}}\right) \times \ldots \times\left(s_{q_{v}, j_{d}-1}, s_{q_{v}, j_{d}}\right), A \subset \Delta_{\mathbf{j}_{0}}^{v_{0}}\right\} \tag{14}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\left(\frac{1}{2 q_{v}}\right)^{d} \leq \operatorname{mes}(A) \leq\left(\frac{2}{q_{v}}\right)^{d} \quad \text { for all } \quad A \in \Omega_{v} \tag{15}
\end{equation*}
$$

Notice, that if for some $A \in \Omega_{v}, v \geq v_{0}$, the inequality

$$
\begin{equation*}
\operatorname{mes}\left(E_{k} \cap A\right) \leq 2^{-2 d} \operatorname{mes}(A) \tag{16}
\end{equation*}
$$

holds, then

$$
\begin{equation*}
\left|\sigma_{q_{v}}(\mathbf{x})\right| \leq 2^{d} \lambda_{k} \quad \text { for all } \quad \mathbf{x} \in A \tag{17}
\end{equation*}
$$

Let suppose that $A \in \Omega_{v}$ and for some point $\mathbf{x}_{0} \in A$ the inequality 17) does not hold, i.e. $\left|\sigma_{q_{v}}\left(\mathbf{x}_{0}\right)\right|>2^{d} \lambda_{k}$. Since $\sigma_{q_{v}}(\mathbf{x})$ is linear with respect to each variable on the set $A$, according to the Lemma 1 we obtain that

$$
\operatorname{mes}\left\{\mathbf{x} \in A:\left|\sigma_{q_{v}}(\mathbf{x})\right| \geq \lambda_{k}\right\} \geq 3^{-d} \operatorname{mes}(A)
$$

which contradicts (16).
According to (8), (13) and (14), we obtain that

$$
\begin{equation*}
\operatorname{mes}\left(E_{k} \cap A\right) \leq\left(4^{4} M\right)^{-d} \operatorname{mes}\left(\Delta_{\mathbf{j}_{0}}^{v_{0}}\right)<\left(4^{3} M\right)^{-d} \operatorname{mes}(A), \quad \text { when } \quad A \in \Omega_{v_{0}} \tag{18}
\end{equation*}
$$

Now let's define by induction the families $\Omega_{v}^{1}$ and $\Omega_{v}^{2}, v \geq v_{0}$. If $v=v_{0}$, then we set

$$
\Omega_{v_{0}}^{1}:=\left\{A \in \Omega_{v_{0}}: \operatorname{mes}\left(E_{k} \cap A\right)>\left(4^{3} M\right)^{-d} \cdot \operatorname{mes}(A)\right\}, \quad Q_{v_{0}}:=\bigcup_{A \in \Omega_{v_{0}}^{1}} A
$$

and

$$
\Omega_{v_{0}}^{2}:=\left\{A \in \Omega_{v_{0}}: A \not \subset Q_{v_{0}}\right\}, \quad P_{v_{0}}:=\bigcup_{A \in \Omega_{v_{0}}^{2}} A
$$

From (18) we have, that $Q_{v_{0}}=\emptyset$ and the closure of $P_{v_{0}}$ is the $\operatorname{supp}\left(M_{\mathbf{j}_{0}}^{v_{0}}\right)$, i.e. $\overline{P_{v_{0}}}=\overline{\Delta_{\mathbf{j}_{0}}^{v_{0}}}$. Now suppose we have defined the sets $\Omega_{n}^{1}, \Omega_{n}^{2}, Q_{n}$ and $P_{n}$ for all $n<v$. Let's denote

$$
\begin{gather*}
\Omega_{v}^{1}:=\left\{A \in \Omega_{v}: \operatorname{mes}\left(E_{k} \cap A\right)>\left(4^{3} M\right)^{-d} \cdot \operatorname{mes}(A) \text { and } A \not \subset \bigcup_{n<v} Q_{n}\right\}  \tag{19}\\
Q_{v}:=\bigcup_{A \in \Omega_{v}^{1}} A \\
\Omega_{v}^{2}:=\left\{A \in \Omega_{v}: A \not \subset \bigcup_{n \leq v} Q_{n}\right\}, \quad P_{v}:=\bigcup_{A \in \Omega_{v}^{2}} A .
\end{gather*}
$$

Thus we have defined the families $\Omega_{v}^{1}, \Omega_{v}^{2}$ and the sets $P_{v}, Q_{v}\left(v \geq v_{0}\right)$, satisfying to the following conditions: $\Omega_{v}^{1} \subset \Omega_{v}, \quad \Omega_{v}^{2} \subset \Omega_{v}$,

$$
\begin{gather*}
\operatorname{supp}\left(M_{\mathbf{j}_{0}}^{v_{0}}\right)=\Delta_{\mathbf{j}_{0}}^{v_{0}}=\overline{P_{v}} \bigcup\left(\bigcup_{n \leq v} \overline{Q_{n}}\right), \quad P_{v} \bigcap\left(\bigcup_{n \leq v} Q_{n}\right)=\emptyset  \tag{20}\\
Q_{v} \cap Q_{n}=\emptyset, \quad \text { if } \quad v \neq n \tag{21}
\end{gather*}
$$

It is seen from (21) and (19), that

$$
\begin{equation*}
\operatorname{mes}\left(\bigcup_{n \leq v} Q_{n}\right)<\left(4^{3} M\right)^{d} \operatorname{mes}\left(E_{k}\right) \text { for any } \quad v \geq v_{0} \tag{22}
\end{equation*}
$$

For any $v>v_{0}$ denote

$$
\begin{equation*}
J_{v}:=\left\{\mathbf{j} \in \mathbb{N}_{v}^{d}: \Delta_{\mathbf{j}}^{v} \cap Q_{v} \neq \emptyset, \quad \Delta_{\mathbf{j}}^{v} \subset \overline{P_{v-1}}\right\} \tag{23}
\end{equation*}
$$

Note that for any $\mathbf{j} \in J_{v}$ and for all $B \in \Omega_{v}$, which are subset of $\Delta_{\mathbf{j}}^{v}$, the inequality

$$
\begin{equation*}
\operatorname{mes}\left(E_{k} \cap B\right)<4^{-d} \operatorname{mes}(B) \tag{24}
\end{equation*}
$$

holds. Suppose there exists a parallelepiped $B \in \Omega_{v}$ such that $B \subset \Delta_{\mathbf{j}}^{v}$, but the inequality (24) does not hold. Denote by $D$ that set from $\Omega_{v-1}$, which contains $B$. Using (6) and (15), we get that

$$
\operatorname{mes}(B) \geq\left(\frac{1}{2 q_{v}}\right)^{d} \geq\left(\frac{1}{2 M q_{v-1}}\right)^{d} \geq\left(\frac{1}{4 M}\right)^{d} \operatorname{mes}(D)
$$

Therefore,

$$
\operatorname{mes}\left(E_{k} \cap D\right) \geq \operatorname{mes}\left(E_{k} \cap B\right) \geq 4^{-d} \operatorname{mes}(B) \geq\left(4^{2} M\right)^{-d} \operatorname{mes}(D)
$$

which means that $B \subset D \subset \bigcup_{n<v} Q_{n}$, moreover $\Delta_{\mathbf{j}}^{v} \bigcap\left(\bigcup_{n<v} Q_{n}\right) \neq \emptyset$ (see 19 p ). But this contradicts to (23) and 20). Thus, if $\mathbf{j} \in J_{v}$, then for all $B \in \Omega_{v}$ with $B \in \Delta_{\mathbf{j}}^{v}$ the inequality 24 is true, therefore,

$$
\operatorname{mes}\left(E_{k} \cap \Delta_{\mathbf{j}}^{v}\right)<4^{-d} \operatorname{mes}\left(\Delta_{\mathbf{j}}^{v}\right)
$$

Using the last inequality and according to (16) and (17), we get

$$
\begin{equation*}
\left|\sigma_{q_{v}}(\mathbf{x})\right| \leq 2^{d} \lambda_{k}, \quad \text { if } \quad \mathbf{x} \in \Delta_{\mathbf{j}}^{v}, \quad \mathbf{j} \in J_{v} \tag{25}
\end{equation*}
$$

Similarly we obtain (according to definition of $P_{v}$ and (19), that if $\Delta_{\mathbf{j}}^{v} \subset P_{v}$, then mes $\left(E_{k} \cap \Delta_{\mathbf{j}}^{v}\right) \leq\left(4^{3} M\right)^{-d} \operatorname{mes}\left(\Delta_{\mathbf{j}}^{v}\right)$ and, therefore,

$$
\begin{equation*}
\left|\sigma_{q_{v}}(\mathbf{x})\right| \leq 2^{d} \lambda_{k}, \quad \text { if } \quad \mathbf{x} \in \Delta_{\mathbf{j}}^{v} \subset P_{v} \tag{26}
\end{equation*}
$$

Now let's define by induction different expansions $\varphi_{n}$ for $M_{\mathbf{j}_{0}}^{v_{0}}$, satisfying conditions:

$$
\begin{gather*}
M_{\mathbf{j}_{0}}^{v_{0}}=\varphi_{n}=\sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n} M_{\mathbf{j}}^{v}+\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n} \subset P_{n}} \alpha_{\mathbf{j}}^{n} M_{\mathbf{j}}^{n}  \tag{27}\\
\sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n}+\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n} \subset P_{n}} \alpha_{\mathbf{j}}^{n}=1, \quad \alpha_{v, \mathbf{j}}^{n} \geq 0, \quad \alpha_{\mathbf{j}}^{n} \geq 0 . \tag{28}
\end{gather*}
$$

Set $\varphi_{v_{0}}:=M_{\mathbf{j}_{0}}^{v_{0}}$. It is clear that $\varphi_{v_{0}}$ satisfies both (27) and (28).
Suppose we have defined expansions $\varphi_{v_{0}}, \ldots, \varphi_{n}$, satisfying (27) and 28). According to Lemma 2, for any $\Delta_{\mathbf{j}}^{n} \subset P_{n}$ we have

$$
\begin{equation*}
M_{\mathbf{j}}^{n}=\sum_{\mathbf{i}: \Delta_{\mathbf{i}}^{n+1} \subset \Delta_{\mathbf{j}}^{n}} \beta_{\mathbf{i}} M_{\mathbf{i}}^{n+1}, \quad \text { where } \quad \beta_{\mathbf{i}} \geq 0 \tag{29}
\end{equation*}
$$

Note, that if $\Delta_{\mathbf{j}}^{n} \subset P_{n}$ and 29 holds, then either $\Delta_{\mathbf{i}}^{n+1} \cap Q_{n+1} \neq \emptyset$ and, therefore, $\mathbf{i} \in J_{n+1}$ or $\Delta_{\mathbf{i}}^{n+1} \subset P_{n+1}$. Therefore, inserting the expressions 29) in 27) and grouping similar terms, we obtain

$$
\begin{equation*}
M_{\mathbf{j}_{0}}^{v_{0}}=\varphi_{n+1}=\sum_{v \leq n+1} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n+1} M_{\mathbf{j}}^{v}+\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n+1} \subset P_{n+1}} \alpha_{\mathbf{j}}^{n+1} M_{\mathbf{j}}^{n+1} \tag{30}
\end{equation*}
$$

It is obvious, that all coefficients in (30) are nonnegative. Since the integrals of all functions $M_{\mathbf{j}}^{v}$ are 1 (see $(10)$ ), from (30) we get that

$$
\sum_{v \leq n+1} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n+1}+\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n+1} \subset P_{n+1}} \alpha_{\mathbf{j}}^{n+1}=1
$$

So we have proved, that for any $n \geq v_{0}$ the expansion (27) with coefficients (28) is possible.

According to the definition of $J_{v}$ and sets $Q_{v}$, we obtain that

$$
\operatorname{mes}\left(\bigcup_{\mathbf{j} \in J_{V}} \Delta_{\mathbf{j}}^{v}\right) \leq 4^{d} \operatorname{mes}\left(Q_{v}\right)
$$

Therefore, using the inequality (22) and (21), for the measure of the set $D_{n}:=\bigcup_{v \leq n} \bigcup_{\mathbf{j} \in J_{v}} \Delta_{\mathbf{j}}^{v}$ we get that

$$
\begin{equation*}
\operatorname{mes}\left(D_{n}\right) \leq 4^{d} \operatorname{mes}\left(\bigcup_{v \leq n} Q_{v}\right) \leq\left(4^{4} M\right)^{d} \operatorname{mes}\left(E_{k}\right) \tag{31}
\end{equation*}
$$

According to (10), 27, (28) and (31), we obtain that for any $n \geq v_{0}$

$$
\begin{equation*}
\sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n}=\sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n} \int_{D_{n}} M_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x} \leq \int_{D_{n}} M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x}) d \mathbf{x} \leq\left(4^{5} M q_{v_{0}}\right)^{d} \operatorname{mes}\left(E_{k}\right) \tag{32}
\end{equation*}
$$

Suppose we are given a number $v \geq v_{0}$ and $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{d}\right) \in \mathbb{N}_{0}^{d}$ such that $\max _{i}\left\{p_{i}\right\}>q_{v}$. Then, according to the definition of functions $f_{\mathbf{p}}$ and $M_{\mathbf{j}}^{v}$, we get

$$
\left(f_{\mathbf{p}}, M_{\mathbf{j}}^{v}\right):=\int_{[0,1]]^{d}} f_{\mathbf{p}}(\mathbf{x}) M_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x}=0 \quad \text { for any } \quad \mathbf{j} \in \mathbb{N}_{v}^{d}
$$

Therefore, for any $n \geq v$ and for all $\mathbf{j} \in \mathbb{N}_{v}^{d}$ one can write

$$
\begin{equation*}
\left(\sigma_{q_{n}}, M_{\mathbf{j}}^{v}\right)=\sum_{\mathbf{p} \in \mathbb{N}_{n}^{d}} a_{\mathbf{p}}\left(f_{\mathbf{p}}, M_{\mathbf{j}}^{v}\right)=\sum_{\mathbf{p} \in \mathbb{N}_{v}^{d}} a_{\mathbf{p}}\left(f_{\mathbf{p}}, M_{\mathbf{j}}^{v}\right)=\left(\sigma_{q_{v}}, M_{\mathbf{j}}^{v}\right) \tag{33}
\end{equation*}
$$

It is easily seen (see Eqs. 27) and (33)) that for any $n \geq v_{0}$

$$
\begin{align*}
& \left|\int_{[0,1]^{d}} \sigma_{q_{v_{0}}}(\mathbf{x}) M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x}) d \mathbf{x}-\int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} M_{\mathbf{j}_{0}}^{v_{0}}(\mathbf{x}) d \mathbf{x}\right|=\left|\left(\sigma_{q_{n}}-[f]_{\lambda_{k}}, M_{\mathbf{j}_{0}}^{v_{0}}\right)\right|= \\
& \quad=\left|\left(\sigma_{q_{n}}-[f]_{\lambda_{k}}, \sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n} M_{\mathbf{j}}^{v}+\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n} \subset P_{n}} \alpha_{\mathbf{j}}^{n} M_{\mathbf{j}}^{n}\right)\right| \leq  \tag{34}\\
& \leq\left|\sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n}\left(\sigma_{q_{v}}-[f]_{\lambda_{k}}, M_{\mathbf{j}}^{v}\right)\right|+\left|\sum_{\mathbf{j}: \Delta_{\mathbf{j}}^{n} \subset P_{n}} \alpha_{\mathbf{j}}^{n}\left(\sigma_{q_{n}}-[f]_{\lambda_{k}} M_{\mathbf{j}}^{n}\right)\right|=: I_{1}+I_{2} .
\end{align*}
$$

Using (25), (10), (32) and (12), for $I_{1}$ we will have the inequality

$$
\begin{gather*}
I_{1} \leq \sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n}\left|\left(\sigma_{q_{v}}-[f]_{\lambda_{k}}, M_{\mathbf{j}}^{v}\right)\right| \leq\left(2^{d} \lambda_{k}+\lambda_{k}\right) \sum_{v \leq n} \sum_{\mathbf{j} \in J_{v}} \alpha_{v, \mathbf{j}}^{n} \leq \\
\leq\left(4^{6} M q_{v_{0}}\right)^{d} \lambda_{k} \operatorname{mes}\left(E_{k}\right)<4^{-d} \varepsilon, \quad \text { for any } \quad n \geq v_{0} \tag{35}
\end{gather*}
$$

Denote $H_{n}:=\bigcup_{\mathbf{j}: \Delta_{\mathbf{j}}^{n} \subset P_{n}} \Delta_{\mathbf{j}}^{n}, \quad T_{k}:=\left\{\mathbf{x} \in \Delta_{\mathbf{j}_{0}}^{v_{0}}:|f(\mathbf{x})|>\lambda_{k}\right\}$.
It is clear (see also 12) that

$$
\operatorname{mes}\left(T_{k}\right) \leq \operatorname{mes}\left(E_{k}\right) \leq\left(4^{7} M q_{v_{0}}\right)^{-d} \lambda_{k}^{-1} \varepsilon
$$

According to (10) and (27), we obtain

$$
\begin{gather*}
I_{2} \leq\left(4 q_{v_{0}}\right)^{d} \int_{H_{n}}\left|\sigma_{q_{n}}(\mathbf{x})-[f(\mathbf{x})]_{\lambda_{k}}\right| d \mathbf{x}= \\
=\left(4 q_{v_{0}}\right)^{d} \int_{H_{n} \cap T_{k}}\left|\sigma_{q_{n}}(\mathbf{x})-[f(\mathbf{x})]_{\lambda_{k}}\right| d \mathbf{x}+  \tag{36}\\
+\left(4 q_{v_{0}}\right)^{d} \int_{H_{n} \backslash T_{k}}\left|\sigma_{q_{n}}(\mathbf{x})-[f(\mathbf{x})]_{\lambda_{k}}\right| d \mathbf{x}:=I_{3}+I_{4} .
\end{gather*}
$$

Using (26) and (12), we can estimate $I_{3}$ as follows:

$$
\begin{equation*}
I_{3} \leq\left(4 q_{v_{0}}\right)^{d}\left(2^{d} \lambda_{k}+\lambda_{k}\right)\left(4^{7} M q_{v_{0}}\right)^{-d} \lambda_{k}^{-1} \varepsilon<4^{-d} \varepsilon \tag{37}
\end{equation*}
$$

Since $\sigma_{q_{n}}(\mathbf{x})-[f(\mathbf{x})]_{\lambda_{k}}$ on the set $H_{n} \backslash T_{k}$ converges in measure to 0 , as $n \rightarrow \infty$, and is bounded, then for sufficiently large $n$ we get that $I_{4}<\frac{\varepsilon}{4}$. Therefore, according to (34)-(37), we obtain (11).

Now let's prove that for any $\mathbf{m} \in \mathbb{N}_{0}^{d}$ the coefficient $a_{\mathbf{m}}$ can be found by (5). Assume $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{N}_{0}^{d}$. First let's fix a number $v$ satisfying $\max _{1 \leq i \leq d} m_{i} \leq q_{v}$. Since $f_{\mathbf{m}} \in S_{q_{v}}$ and the system of functions $\left\{M_{\mathbf{j}}^{v}\right\}_{\mathbf{j} \in \mathbb{N}_{v}^{d}}$ is a basis in the space $S_{q_{v}}$, then one can find numbers $\beta_{\mathbf{j}}, \mathbf{j} \in \mathbb{N}_{v}^{d}$, such that

$$
\begin{equation*}
f_{\mathbf{m}}(\mathbf{x})=\sum_{\mathbf{j} \in \mathbb{N}_{V}^{d}} \beta_{\mathbf{j}} M_{\mathbf{j}}^{v}(\mathbf{x}) \tag{38}
\end{equation*}
$$

Using (3), (38) and (11), we get that

$$
\begin{gathered}
a_{\mathbf{m}}=\left(\sigma_{q_{v}}, f_{\mathbf{m}}\right)=\sum_{\mathbf{j} \in \mathbb{N}_{v}^{d}} \beta_{\mathbf{j}}\left(\sigma_{q_{v}}, M_{\mathbf{j}}^{v}\right)=\sum_{\mathbf{j} \in \mathbb{N}_{v}^{d}} \beta_{\mathbf{j}} \lim _{k \rightarrow \infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} M_{\mathbf{j}}^{v}(\mathbf{x}) d \mathbf{x}= \\
=\lim _{k \rightarrow \infty} \int_{[0,1]^{d}}[f(\mathbf{x})]_{\lambda_{k}} f_{\mathbf{m}}(\mathbf{x}) d \mathbf{x},
\end{gathered}
$$

which proves the Theorem 1 .

## REFERENCES

1. Franklin Ph. A Set of Continuous Orthogonal Functions. // Math. Ann., 1928, v. 100, p. 522-528.
2. Gevorkyan G.G. Uniqueness Theorem for Multiple Franklin Series. // Math. Zametki, 2017, v. 101, № 2, p. 199-210 (in Russian).
3. Gevorkyan G. G., Poghosyan M. P. On Recovering of Coefficients of a Franklin Series with the "Good" Majorant of Partial Sums. // Izv. NAN Armenii. Ser. Math., 2017, v. 52, № 5, p. 25-35 (in print).
4. Gevorkyan G.G. Uniqueness of Franklin Series. // Math. Zametki, 1989, v. 46, № 2, p. 51-58 (in Russian).
5. Gevorkyan G.G. Majorants and Uniqueness of Series in the Franklin System. // Math. Zametki, 1996, v. 59, № 4, p. 521-545 (in Russian).
6. Gevorkyan G.G. Uniqueness Theorems for Series in the Franklin System. // Math. Zametki, 2015, v. 98, № 5, p. 786-789 (in Russian).
7. Poghosyan M.P. Uniqueness of Series by General Franklin Systems. // Izv. NAN Armenii. Ser. Math., 2000, v. 35, № 4, p. 77-83 (in Russian).
8. Gevorkyan G.G., Navasardyan K.A. On Haar Series of $A$-Integrable Functions. // Izv. NAN Armenii. Matematika, 2017, v. 52, № 3, p. 30-45 (in Russian).
9. Kostin V.V. Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions. // Math. Zametki, 2003, v. 73, № 5, p. 704-723 (in Russian).
10. Kostin V.V. Generalization of the Balashov Theorem on Subseries of the Fourier-Haar Series. // Math. Zametki, 2004, v. 76, № 5, p. 740-747 (in Russian).
11. Gevorkyan G.G., Navasardyan K.A. On a Summation Method for Series with Respect to Vilenkin and Haar Systems. // Reports NAS of Armenia, 2017, v. 117, № 1, p. 20-25 (in Russian).

[^0]:    * E-mail: knavasard@ysu.am

