PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, **51**(2), p. 196–198

Mathematics

ON AUTOMORPHISMS OF THE RELATIVELY FREE GROUPS SATISFYING THE IDENTITY $[x^n, y] = 1$

Sh. A. STEPANYAN *

Chair of Algebra and Geometry YSU, Armenia

We prove that if an automorphism φ of the relatively free group of the group variety, defined by the identity relation $[x^n, y] = 1$, acts identically on its center, then φ has either infinite or odd order, where $n \ge 665$ is an arbitrary odd number.

MSC2010: 20F28, 20F05.

Keywords: relatively free group, automorphism, periodic group.

Introduction. Let *m* and *n* be integers such that m > 1 and $n \ge 665$ is odd. Consider the set of elementary words $\mathcal{E} = \bigcup_{\alpha=1}^{\infty} \mathcal{E}_{\alpha}$ in the group alphabet $\{a_1, a_2, \ldots, a_m\}$ defined in [1] (Chapter VI, §2), see also [2] and an arbitrary countable (or finite) abelian group

$$D = \langle d_1, d_2, \dots, d_i, \dots | r = 1, r \in \mathcal{R} \rangle, \tag{1}$$

where \mathcal{R} is some set of words in the group alphabet $d_1, d_2, \ldots, d_i, \ldots$

Denote by $A_D(m, n)$ the group generated by

$$a_1, a_2, \dots, a_m$$
 and $d_1, d_2, \dots, d_i, \dots$ (2)

and having the defining relations of the form

$$r = 1$$
 for all $r \in \mathcal{R}$, (3)

 $a_i d_j = d_j a_i$ for all $i = 1, 2, \dots, m$ and $j \in \mathbb{N}$, (4)

 $A_i^n = d_i \quad \text{for all} \quad A_i \in \mathcal{E} \quad \text{and} \quad j \in \mathbb{N}.$ (5)

For the case $\mathcal{R} = \{d_i^{-1}d_j | i, j \in \mathbb{N}\}$ it is proved in [3] that the inner automorphism group of $A_D(m,n)$ is a characteristic subgroup in the automorphism group of $A_D(m,n)$.

It is proved by S. Adian and V. Atabekyan [4], that if m > 1 is an integer and $n \ge 665$ is an odd integer, then for any abelian group (1) the center of $A_D(m,n)$ is D and for the group

$$C = \langle d_1, d_2, \dots, d_i, \dots | [d_k, d_j] = 1, \ k, j \in \mathbb{N} \rangle,$$

the group $A_C(m,n)$ is a free group of rank *m* in the variety of groups \mathfrak{C} defined by the identity $[x^n, y] = 1$. Moreover, the following statement holds.

^{*} E-mail: shogh.stepanyan@gmail.com

Lemma 1. (see Theorem 3 in [4]). The group $A_C(m,n)$ is torsion-free.

Note that the above mentioned results about the group the groups $A_C(m,n)$ for odd $n > 10^{10}$ using another technic were proved by Ol'shanskii and Ashmanov in [5] (see also [6]).

We will use the following well known Theorem of Bear.

Lemma 2. [7]. Let G be a group and the index of the center of G be finite. Then [G,G] is also finite.

The Main Theorem.

Theorem. If an automorphism φ of the group $A_C(m,n)$ is an involution, then there exists an element $c \in C$, for which $\varphi(c) \neq c$.

Proof. Suppose that φ is an involution of $A_C(m,n)$ and it acts identically on the center. We want to get a contradiction.

Consider the following subgroup

$$K = A_C(m, n) \rtimes \langle \varphi \rangle,$$

of the holomorph $Hol(A_C(m,n))$ of $A_C(m,n)$. Recall that in the holomorph the multiplication is defined by the rule:

$$(a_1, \boldsymbol{\varphi}^t) \cdot (a_2, \boldsymbol{\varphi}^s) = (a_1 \boldsymbol{\varphi}^t(a_2), \boldsymbol{\varphi}^{t+s}).$$

If $d \in Z(A_C(m, n)) = C$, then

 $(d, 1) \cdot (a, \varphi^t) = (da, \varphi^t) = (ad, \varphi^t) = (a, \varphi^t) \cdot (d, 1),$

because $\varphi^t(d) = d$ for $d \in C$ by the condition of Theorem. Therefore, we get that $(d, 1) \in Z(K)$.

Consider an element $h = (a, \varphi^t) \in H$. We have $h^2 = (a_1, 1)$, where $a_1 \in A_C(m, n)$, and hence $h^{2n} = (a_1^n, 1) \in Z(K)$, since $a_1^n \in Z(A_C(m, n))$ (because the identity $[x^n, y] = 1$ holds in $A_C(m, n)$).

This means that the quotient group K/Z(K) is a periodic group.

The element $(1, \varphi)$ has order 2 in *K*. Since the automorphism φ is an involution, there is an element $x \in A_C(m, n)$ such that $\varphi(x) \neq x$.

Consider the element $y = (\varphi^{-1}(x^{-1})x, \varphi^{-1})$ in *K*. One can easily check that $y^2 = (\varphi^{-1}(x^{-1})x\varphi^{-2}(x^{-1})\varphi^{-1}(x), \varphi^{-2}) = (1, 1)$. Moreover, the element $(1, \varphi) \cdot y = (x^{-1}\varphi(x), 1)$ belongs to the subgroup $A_C(m, n)$ of *K*. Since $A_C(m, n)/C$ is isomorphic to the free Burnside group B(m, n), $(1, \varphi) \cdot y$ has finite period *n* in the quotient group K/Z(K).

Consider the subgroup L generated by the subgroup Z(K) and elements y and $(1, \varphi)$ of the group K. It is easy to check that the index of the subgroup Z(K) in L is not greater than 2n. By Lemma 2, we get that the commutator [L, L] is finite.

On the other hand, since $A_C(m,n)$ is torsion-free (see Lemma 1), any nontrivial commutator in *L* will have an infinite order. This is a contradiction, which completes the Proof of the Theorem.

C or ollary. If an automorphism φ of the group $A_C(m,n)$ is identity on the center *C*, then the order of φ is either infinite or odd.

REFERENCES

- 1. Adian S.I. The Burnside Problem and Identities in Groups. In Serial: Ergebnisse der Mathematik und Ihrer Grenzgebiete. V. 95. Berlin: Springer-Verlag, 1979, 311 p.
- Adian S.I. New Estimates of Odd Exponents of Infinite Burnside Groups. // Proceedings of Steklov Inst. Math., 2015, v. 289, p. 33–71.
- 3. Grigoryan A.E. Inner Automorphisms of Non-Commutative Analogues of the Additive Group of Rational Numbers. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, № 1, p. 12–14.
- 4. Adian S.I., Atabekyan V.S. Central Extensions of Free Burnside Groups by an Arbitrary Abelian Group. // Mat. Zametki (Accepted for publication).
- 5. Ashmanov I.S., Ol'shanskii A.Yu. Abelian and Central Extensions of Aspherical Groups. // Izv. Vyssh. Uchebn. Zaved. Mat., 1985, № 11, p. 48–60 (in Russian).
- 6. Ol'shanskii A.Yu. The Geometry of Defning Relations in Groups. Amsterdam: Kluwer-Press, 1991.
- Baer R. Endlichkeitskriterien f
 ür Kommutatorgruppen. // Math. Aim., 1952, v. 124, p. 161–177.