ON TRANSLATION OF TYPED FUNCTIONAL PROGRAMS INTO UNTYPED FUNCTIONAL PROGRAMS

S. A. NIGIYAN ${ }^{*}$ T. V. KHONDKARYAN**
Chair of Programming and Information Technologies YSU, Armenia

In this paper typed and untyped functional programs are considered. Typed functional programs use variables of any order and constants of order ≤ 1, where constants of order 1 are strong computable, λ-definable functions with indeterminate values of arguments. The basic semantics of a typed functional program is a function with indeterminate values of arguments, which is the main component of its least solution. The basic semantics of an untyped functional program is an untyped λ-term, which is defined by means of a fixed point combinator. An algorithm that translates typed functional program P into untyped functional program P^{\prime} is suggested. It is proved that the basic semantics of the program $P^{\prime} \lambda$-defines the basic semantics of the program P.

MSC2010: 68N18.
Keywords: typed functional program, untyped functional program, basic semantics, translation, λ-definability.

Introduction. The paper is devoted to typed and untyped functional programs. A typed functional program is a system of equations (with separating variables) in the monotonic models of typed λ-calculus. Typed functional programs use variables of any order and constants of order ≤ 1, where constants of order 1 are strong computable, λ-definable functions with indeterminate values of arguments. The basic semantics of the typed functional program is a function with indeterminate values of arguments, which is the main component of its least solution (see $[1-3]$). An untyped functional program is a system of equations (with separating variables) in the untyped λ-calculus. The basic semantics of an untyped functional program is an untyped λ-term, which is defined by means of a fixed point combinator (see [4-6]). An algorithm that translates typed functional program P into untyped functional program P^{\prime} is suggested. It is proved that the basic semantics of the program P^{\prime} λ-defines the basic semantics of the program P.

[^0]Typed Functional Programs. The definitions of this section can be found in [1,-3, 7, 8]. Let M be a partially ordered set, which has a least element \perp, which corresponds to an indeterminate value. For every $m \in M$ we have: $\perp \sqsubseteq m$ and $m \sqsubseteq m$, where \sqsubseteq is a partial ordering on the set M.

Let us define the set of types (denoted by Types).

1. $M \in$ Types;
2. If $\beta, \alpha_{1}, \ldots, \alpha_{k} \in$ Types $(k>0)$, then the set of all monotonic mappings from $\alpha_{1} \times \ldots \times \alpha_{k}$ into β (denoted by $\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$) belongs to Types.

Let $\alpha \in$ Types, then the order of type α (denoted by $\operatorname{ord}(\alpha)$) will be a natural number, which is defined in the following way: if $\alpha=M$, then $\operatorname{ord}(\alpha)=0$, if $\alpha=\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$, where $\beta, \alpha_{1}, \ldots \alpha_{k} \in$ Types, $k>0$, then $\operatorname{ord}(\alpha)=1+\max \left(\operatorname{ord}\left(\alpha_{1}\right), \ldots, \operatorname{ord}\left(\alpha_{k}\right), \operatorname{ord}(\beta)\right)$. If x is a variable of type α and a constant $c \in \alpha$, then $\operatorname{ord}(x)=\operatorname{ord}(c)=\operatorname{ord}(\alpha)$.

Let $\alpha \in$ Types and V_{α}^{T} be a countable set of variables of type α, then $V^{T}=\underset{\alpha \in T y p e s}{\bigcup} V_{\alpha}^{T}$ is the set of all variables. The set of all terms denoted by $\Lambda^{T}=\underset{\alpha \in T y p e s}{\bigcup} \Lambda_{\alpha}^{T}$, where Λ_{α}^{T} is the set of terms of type α, is defined the following way:

1. If $c \in \alpha, \alpha \in$ Types, then $c \in \Lambda_{\alpha}^{T}$;
2. If $x \in V_{\alpha}^{T}, \alpha \in$ Types, then $x \in \Lambda_{\alpha}^{T}$;
3. If $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]}^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}$, where $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\beta}^{T}$ (the operation of application);
4. If $\tau \in \Lambda_{\beta}^{T}, x_{i} \in V_{\alpha_{i}}^{T}$, where $\beta, \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \neq x_{j}, i, j=1, \ldots, k$, $k \geq 1$, then $\lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]}^{T}$ (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as the notion of a free variable are introduced in the conventional way. The set of all free variables of a term t is denoted by $F V(t)$. A term which doesn't contain free variables is called a closed term. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables. In what follows congruent terms are considered identical.

Let $t \in \Lambda_{\alpha}^{T}, \alpha \in$ Types and $F V(t) \subset\left\{y_{1}, \ldots, y_{n}\right\}, \quad \overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$, where $y_{i} \in V_{\beta_{i}}^{T}, y_{i}^{0} \in \beta_{i}, \beta_{i} \in$ Types, $i=1, \ldots, n, n \geq 0$. The value of the term t for the values of the variables y_{1}, \ldots, y_{n} equal to $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$ is denoted by $\operatorname{Val}_{\overline{y_{0}}}(t)$ and defined as follows:

1. If $t \equiv c$ and $c \in \alpha$, then $\operatorname{Val}_{\bar{y}_{0}}(c)=c$;
2. If $t \equiv x, x \in V_{\alpha}^{T}$, then $\operatorname{Val}_{\bar{y}_{0}}(x)=y_{i}^{0}$, where $F V(x)=\{x\} \subset\left\{y_{1}, \ldots, y_{n}\right\}$ and $x \equiv y_{i}, i=1, \ldots, n, n \geq 1$;
3. If $t \equiv \tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\alpha}^{T}$, where $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \alpha\right]}^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types;
$i=1, \ldots, k, k \geq 1$, then $\operatorname{Val}_{\overline{y_{0}}}\left(\tau\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{Val}_{\overline{y_{0}}}(\tau)\left(\operatorname{Val}_{\overline{y_{0}}}\left(t_{1}\right), \ldots, \operatorname{Val}_{\overline{y_{0}}}\left(t_{k}\right)\right)$;
4. If $t \equiv \lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\alpha}^{T}$, where $\alpha=\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right], \tau \in \Lambda_{\beta}^{T}, x_{i} \in V_{\alpha_{i}}^{T}$, $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\operatorname{Val}_{y_{0}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right) \in\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$ and is defined as follows: let $\left\{y_{1}, \ldots, y_{n}\right\} \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\left\{y_{j_{1}}, \ldots, y_{j_{s}}\right\}, s \geq 0$, and
$\overline{z_{0}}=\left\langle y_{j_{1}}^{0}, \ldots, y_{j_{s}}^{0}\right\rangle$, then for any $\overline{x_{0}}=\left\langle x_{1}^{0}, \ldots, x_{k}^{0}\right\rangle$, where $x_{i}^{0} \in \alpha_{i}, i=1, \ldots, k$, $\operatorname{Val}_{\overline{y_{0}}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right)\left(x_{1}^{0}, \ldots, x_{k}^{0}\right)=\operatorname{Val}_{\overline{x_{0}}, \overline{z_{0}}}(\tau)$, where $\overline{x_{0}}, \overline{z_{0}}=\left\langle x_{1}^{0}, \ldots, x_{k}^{0}, y_{j_{1}}^{0}, \ldots, y_{j_{s}}^{0}\right\rangle$.

It follows from [1], that for any $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$ and $\overline{y_{1}}=\left\langle y_{1}^{1}, \ldots, y_{n}^{1}\right\rangle$ such that $\overline{y_{0}} \sqsubseteq \overline{y_{1}}$, where $\overline{y_{i}^{0}}, y_{i}^{1} \in \beta_{i}(1 \leq i \leq n)$, we have the following:

1. $\operatorname{Val}_{\overline{y_{0}}}(t) \in \alpha$;
2. $\operatorname{Val}_{\bar{y}_{0}}(t) \sqsubseteq \operatorname{Val}_{\bar{y}_{1}}(t)$.

Let terms $t_{1}, t_{2} \in \Lambda_{\alpha}^{T}, \alpha \in$ Types, $F V\left(t_{1}\right) \cup F V\left(t_{2}\right)=\left\{y_{1}, \ldots, y_{n}\right\}, y_{i} \in V_{\beta_{i}}^{T}$, $\beta_{i} \in$ Types, $i=1, \ldots, n, n \geq 0$, then terms t_{1} and t_{2} are called equivalent (denoted by $t_{1} \sim t_{2}$), if for any $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$, where $y_{i}^{0} \in \beta_{i}, i=1, \ldots, n$, we have the following: $\operatorname{Val}_{\bar{y}_{0}}\left(t_{1}\right)=\operatorname{Val}_{\overline{y_{0}}}\left(t_{2}\right)$. A term $t \in \Lambda_{\alpha}^{T}, \alpha \in$ Types, is called a constant term with $a \in \alpha$ value, if $t \sim a$.

To show mutually different variables of interest $x_{1}, \ldots, x_{k}, k \geq 1$, of a term t, the notation $t\left[x_{1}, \ldots, x_{k}\right]$ is used. The notation $t\left[t_{1}, \ldots, t_{k}\right]$ denotes the term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{k} for all free occurrences of variables x_{1}, \ldots, x_{k} respectively, where $x_{i} \in V_{\alpha_{i}}^{T}, i \neq j \Rightarrow x_{i} \not \equiv x_{j}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, \quad k \geq 1$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term $t \in \Lambda^{T}$ with a fixed occurrence of a subterm $\tau_{1} \in \Lambda_{\alpha}^{T}$, where $\alpha \in$ Types, is denoted by $t_{\tau_{1}}$ and a term with this occurrence of τ_{1} replaced by τ_{2}, where $\tau_{2} \in \Lambda_{\alpha}^{T}$, is denoted by $\tau_{\tau_{2}}$.

Further, we assume that M is a recursive set and considered terms use variables of any order and constants of order ≤ 1, where constants of order 1 are strong computable, monotonic functions with indeterminate values of arguments. A function $f: M^{k} \rightarrow M, k \geq 1$, with indeterminate values of arguments is said to be strong computable, if there exists an algorithm, which stops with value $f\left(m_{1}, \ldots, m_{k}\right)$ for all $m_{1}, \ldots, m_{k} \in M$ (see [3]). We suppose that each strong computable function with indeterminate values of arguments is given by its algorithm. Hereafter all such terms will be denoted by Λ^{T} and all such terms of type α will be denoted by Λ_{α}^{T}.

A term of the form $\lambda x_{1} \ldots x_{k}\left[\tau\left[x_{1}, \ldots, x_{k}\right]\right]\left(t_{1}, \ldots, t_{k}\right)$, where $x_{i} \in V_{\alpha_{i}}^{T}, i \neq j \Rightarrow$ $x_{i} \not \equiv x_{j}, \tau \in \Lambda^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$, is called a β-redex, its convolution is the term $\tau\left[t_{1}, \ldots, t_{k}\right]$.

A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$.
δ-redex has a form $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}, i=1, \ldots, k$, $k \geq 1$, its convolution is either $m \in M$ and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim m$ or a subterm t_{i} and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim t_{i}, i=1, \ldots, k$. A term t_{1} is said to be obtained from a term t_{0} by one-step δ-reduction (denoted by $t_{0} \rightarrow_{\delta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a δ-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by δ-reduction (denoted by $t_{0} \rightarrow \rightarrow_{\delta} t$), if there exists a finite sequence of terms t_{1}, \ldots, t_{n}
($n \geq 1$) such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\delta} t_{i+1}$, where $i=1, \ldots, n-1$.
A term t_{1} is said to be obtained from a term t_{0} by one-step $\beta \delta$-reduction (denoted by $t_{0} \rightarrow_{\beta \delta} t_{1}$), if either $t_{0} \rightarrow_{\beta} t_{1}$ or $t_{0} \rightarrow_{\delta} t_{1}$. A term t is said to be obtained from a term t_{0} by $\beta \delta$-reduction (denoted by $t_{0} \rightarrow_{\beta \delta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta \delta} t_{i+1}$, where $i=1, \ldots, n-1$. It follows from [7], that if $t_{1} \rightarrow \rightarrow_{\beta \delta} t_{2}$, then $t_{1} \sim t_{2}$, where $t_{1}, t_{2} \in \Lambda_{\alpha}^{T}, \alpha \in$ Types.

A term containing no $\beta \delta$-redexes is called a normal form. The set of all normal forms is denoted by $N F^{T}$. For every term $t \in \Lambda^{T}$ there exists a term $\tau \in N F^{T}$ such that $t \rightarrow \rightarrow_{\beta \delta} \tau$ (see [7]).

A notion of δ-reduction is called a single-valued notion of δ-reduction, if δ is a single-valued relation, i.e. if $\left\langle\tau_{0}, \tau_{1}\right\rangle \in \delta$ and $\left\langle\tau_{0}, \tau_{2}\right\rangle \in \delta$, then $\tau_{1} \equiv \tau_{2}$, where $\tau_{0}, \tau_{1}, \tau_{2} \in \Lambda_{M}^{T}$.

A notion of δ-reduction is called effective notion of δ-reduction, if there exists an algorithm, which for any term $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}$, $i=1, \ldots, k, k \geq 1$, gives its convolution, if $f\left(t_{1}, \ldots, t_{k}\right)$ is a δ-redex and stops with a negative answer otherwise.

Definition 1. An effective, single-valued notion of δ-reduction is called a canonical notion of δ-reduction if:

1. $t \in \Lambda_{M}^{T}, t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow_{\beta \delta} m ;$
2. $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \sim \perp \Rightarrow t \rightarrow \rightarrow_{\beta \delta} \perp$.

In [8] it was proved that for every recursive set of strong computable, monotonic functions with indeterminate values of arguments there exists a canonical notion of δ-reduction. Further we will only use the canonical notion of δ-reduction.

Typed functional program P is the following system of equations:

$$
\left\{\begin{array}{c}
F_{1}=t_{1}\left[F_{1}, \ldots, F_{n}\right], \tag{1}\\
\quad \ldots \\
F_{n}=t_{n}\left[F_{1}, \ldots, F_{n}\right],
\end{array}\right.
$$

where $F_{i} \in V_{\alpha_{i}}, i \neq j \Rightarrow F_{i} \neq F_{j}, t_{i}\left[F_{1}, \ldots, F_{n}\right] \in \Lambda_{\alpha_{i}}, F V\left(t_{i}\left[F_{1}, \ldots, . F_{n}\right]\right) \subset\left\{F_{1}, \ldots, F_{n}\right\}$, $\alpha_{i} \in$ Types, $i, j=1, \ldots, n, n \geq 1, \alpha_{1}=\left[M^{k} \rightarrow M\right], k \geq 1$.

We consider the mapping $\Psi_{P}: \alpha_{1} \times \ldots \times \alpha_{n} \rightarrow \alpha_{1} \times \ldots \times \alpha_{n}$, which is defined as follows: if $\bar{g}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, where $g_{i} \in \alpha_{i}, \quad i=1, \ldots, n$, then $\Psi_{P}(\bar{g})=\left\langle\operatorname{Val}_{\bar{g}}\left(t_{1}\left[F_{1}, \ldots, F_{n}\right]\right), \ldots, \operatorname{Val}_{\bar{g}}\left(t_{n}\left[F_{1}, \ldots, F_{n}\right]\right)\right\rangle . \bar{g}$ is said to be the solution of the program P, if $\Psi_{P}(\bar{g})=\bar{g}$, i.e. $\left\langle\operatorname{Val}_{\bar{g}}\left(t_{1}\left[F_{1}, \ldots, F_{n}\right]\right), \ldots, \operatorname{Val}_{\bar{g}}\left(t_{n}\left[F_{1}, \ldots, F_{n}\right]\right)\right\rangle=$ $\left\langle g_{1}, \ldots, g_{n}\right\rangle$. Every typed functional program P has a least solution (see [1]). Let $\left\langle f_{1}, \ldots, f_{n}\right\rangle \in \alpha_{1} \times \ldots \times \alpha_{n}$ be the least solution of P, then the first component $f_{1} \in\left[M^{k} \rightarrow M\right]$ of the least solution is said to be the basic semantics of the program P and is denoted by f_{P}.

Theorem 1. (On basic semantics of typed functional programs). Let $f_{P} \in\left[M^{k} \rightarrow M\right], k \geq 1$, be the basic semantics of a typed functional program P of the form (1), then for all $m_{1}, \ldots, m_{k} \in M$ we have:

$$
f_{P}\left(m_{1}, \ldots m_{k}\right)=\sup \left\{\Psi_{P}^{s}(\bar{\Omega})_{1}\left(m_{1}, \ldots, m_{k}\right) \mid s<\omega\right\},
$$

where $\bar{\Omega}$ is the least element of the set $\alpha_{1} \times \ldots \times \alpha_{n}, \quad \Psi_{P}^{0}(\bar{\Omega})=\bar{\Omega}, \quad \Psi_{P}^{s+1}(\bar{\Omega})=$ $\Psi_{P}\left(\Psi_{P}^{s}(\bar{\Omega})\right)$ and $\Psi_{P}^{s}(\bar{\Omega})_{1}$ is the first component of the $\Psi_{P}^{s}(\bar{\Omega}), s<\omega, \omega$ is the ordinal corresponding to the set of the natural numbers.

Proof. Follows from the results of [2].
Theorem 2. (On substitutions for typed functional programs). Let $f_{P} \in\left[M^{k} \rightarrow M\right], k \geq 1$, be the basic semantics of a typed functional program P of the form (1), then for all $m_{1}, \ldots, m_{k} \in M$ we have:
$f_{P}\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp \Leftrightarrow \exists s \geq 1, t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow_{\beta \delta} m \neq \perp$, where $t_{i}^{0}\left[F_{1}, \ldots, F_{n}\right] \equiv F_{i}, \quad t_{i}^{r}\left[F_{1}, \ldots, F_{n}\right] \equiv t_{i}\left[t_{1}^{r-1}\left[F_{1}, \ldots, F_{n}\right], \ldots, t_{n}^{r-1}\left[F_{1}, \ldots, F_{n}\right]\right]$, $r \geq 1, i=1, \ldots, n, n \geq 1$.

Proof. If $f_{P}\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp$, then, according to the Theorem 1 , $\exists s \geq 1, \Psi_{P}^{s}(\bar{\Omega})_{1}\left(m_{1}, \ldots, m_{k}\right)=m$, where $\bar{\Omega}$ is the least element of the set $\alpha_{1} \times \ldots \times \alpha_{n}$. Therefore, $\operatorname{Val}_{\Omega}\left(t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right)\right)=m$. Since for every $\bar{g} \in \alpha_{1} \times \ldots \times \alpha_{n}, \quad \bar{\Omega} \sqsubseteq \bar{g}$, then $\operatorname{Val}_{\bar{g}}\left(t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right)\right)=m$ and $t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \sim m$. Therefore, according to the Definition 1 (point 1), $t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow \rightarrow_{\beta \delta} m$.

If $\exists s \geq 1, t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow_{\beta \delta} m \neq \perp$, then, according to [7], $t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \sim m$ and $\operatorname{Val}_{\bar{\Omega}}\left(t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right)\right)=m$. Therefore, $\Psi_{P}^{s}(\bar{\Omega})_{1}\left(m_{1}, \ldots, m_{k}\right)=m$ and, according to the Theorem $1, f_{P}\left(m_{1}, \ldots, m_{k}\right)=m$.

Untyped Functional Programs. The definitions of this section can be found in [4-6]. Let us fix a countable set of variables V. The set Λ of terms is defined as follows:

1. If $x \in V$, then $x \in \Lambda$;
2. If $t_{1}, t_{2} \in \Lambda$, then $\left(t_{1} t_{2}\right) \in \Lambda$ (the operation of application);
3. If $x \in V$ and $t \in \Lambda$, then $(\lambda x t) \in \Lambda$ (the operation of abstraction).

The following shorthand notations are introduced: a term $\left(\ldots\left(t_{1} t_{2}\right) \ldots t_{k}\right)$, where $t_{i} \in \Lambda, i=1, \ldots, k, k>1$, is denoted by $t_{1} t_{2} \ldots t_{k}$ and a term $\left(\lambda x_{1}\left(\lambda x_{2}\left(\ldots\left(\lambda x_{n} t\right) \ldots\right)\right)\right)$, where $x_{j} \in V, j=1, \ldots, n, n>0, t \in \Lambda$, is denoted by $\lambda x_{1} x_{2} \ldots x_{n} . t$.

The notions of free and bound occurrences of variables in terms as well as the notion of free variable are introduced in the conventional way. The set of all free variables of a term t is denoted by $F V(t)$. A term, which does not contain free variables, is called a closed term. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables. In what follows congruent terms are considered identical.

To show mutually different variables of interest $x_{1}, \ldots, x_{k}, k \geq 1$, of a term t the notation $t\left[x_{1}, \ldots, x_{k}\right]$ is used. The notation $t\left[t_{1}, \ldots, t_{k}\right]$ denotes the term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{k} for all free occurrences of variables x_{1}, \ldots, x_{k} respectively, $i \neq j \Rightarrow x_{i} \not \equiv x_{j}, \quad i, j=1, \ldots, k, k \geq 1$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ_{1} is denoted by $t_{\tau_{1}}$ and a term with this occurrence of τ_{1} replaced by a term τ_{2} is denoted by $t_{\tau_{2}}$.

A term of the form $(\lambda x . t[x]) \tau$ is called a β-redex and the term $t[\tau]$ is called its
convolution. A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$. A term containing no β-redexes is called a normal form. The set of all normal forms is denoted by $N F$ and the set of all closed normal forms is denoted by $N F^{0}$. A term t is said to have a normal form, if there exists a term τ such that $\tau \in N F$ and $t \rightarrow_{\beta} \tau$. Of the Church-Rosser theorem [4] it follows, that if $t \rightarrow \rightarrow_{\beta} \tau_{1}, t \rightarrow_{\beta} \tau_{2}, \tau_{1}, \tau_{2} \in N F$, then $\tau_{1} \equiv \tau_{2}$.

If a term has a form $\lambda x_{1} \ldots x_{k} \cdot x t_{1} \ldots t_{n}$, where $x_{1}, \ldots, x_{k}, x \in V, t_{1}, \ldots, t_{n} \in \Lambda$, $k, n \geq 0$, it is called a head normal form and x is called its head variable. The set of all head normal forms is denoted by $H N F$. A term t is said to have a head normal form, if there exists a term τ such that $\tau \in H N F$ and $t \rightarrow \rightarrow_{\beta} \tau$. It is known that $N F \subset H N F$, but $H N F \not \subset N F$ (see [4]).

Let $\lambda x_{1}, \ldots, x_{k} \cdot((\lambda x . t) \tau) t_{1} \ldots t_{n}$ be a term, where $x_{1}, \ldots, x_{k}, x \in V, t_{1}, \ldots, t_{n}, t$, $\tau \in \Lambda, k, n \geq 0$, then the β-redex ($\lambda x . t) \tau$ is called a head β-redex. It is obvious that every head β-redex of the term is its left β-redex, but not every left β-redex of the term is its head β-redex.

Recall, that if a term has a head normal form, then the reducing chain, where always the head β-redex is chosen, leads to a head normal form, and if the term has a normal form, then the reducing chain, where always the left β-redex is chosen, leads to the normal form (see [4]).

Let us give the notion of β-equality (denoted by $={ }_{\beta}$):

1. $t_{1} \rightarrow \rightarrow_{\beta} t_{2} \Rightarrow t_{1}={ }_{\beta} t_{2} ;$
2. $t_{1}={ }_{\beta} t_{2} \Rightarrow t_{2}={ }_{\beta} t_{1}$;
3. $t_{1}={ }_{\beta} t_{2}, t_{2}={ }_{\beta} t_{3} \Rightarrow t_{1}={ }_{\beta} t_{3}$, where $t_{1}, t_{2}, t_{3} \in \Lambda$.

A term $Z \in \Lambda$ is called a fixed point combinator, if for all terms $t \in \Lambda$ we have:

$$
Z t={ }_{\beta} t(Z t) .
$$

Lemma 1. Let Z be a fixed point combinator and a term $t \in \Lambda$, then there exists a sequence of terms $Z_{0}^{t}, Z_{1}^{t}, Z_{2}^{t}, \ldots$ such that $Z_{0}^{t} \equiv Z t$ and $Z_{s}^{t} \rightarrow \rightarrow_{\beta} t Z_{s+1}^{t}$, $s=0,1,2, \ldots$

Proof. Let $x \in V$ and $Z_{0}^{x} \equiv Z x={ }_{\beta} x(Z x)$, according to the Church-Rosser's theorem, there exists such term Z_{1}^{x} that $x(Z x) \rightarrow_{\beta} x Z_{1}^{x}$ and $Z_{0}^{x} \rightarrow_{\beta} x Z_{1}^{x}$, therefore, $Z_{1}^{x}={ }_{\beta} Z x={ }_{\beta} x(Z x)$ and there exists such term Z_{2}^{x} that $x(Z x) \rightarrow_{\beta} x Z_{2}^{x}$ and $Z_{1}^{x} \rightarrow_{\beta}$ $x Z_{2}^{x}$ and so on. Thus, for every $s \geq 0$ we get a term Z_{s}^{x}, such that $Z_{s}^{x}={ }_{\beta} Z x={ }_{\beta}$ $x(Z x)$ and there exists a term Z_{s+1}^{x} such that $x(Z x) \rightarrow_{\beta} x Z_{s+1}^{x}$ and $Z_{s}^{x} \rightarrow \rightarrow x Z_{s+1}^{x}$. Let $Z_{s}^{x} \equiv Z_{s}^{x}[x], Z_{s+1}^{x} \equiv Z_{s+1}^{x}[x]$ and $Z_{s}^{t} \equiv Z_{s}^{x}[t], Z_{s+1}^{t} \equiv Z_{s+1}^{x}[t]$, then $Z_{s}^{t} \rightarrow_{\beta} t Z_{s+1}^{t}$, $s=0,1,2, \ldots$

We introduce notations for some terms:
$\left\langle t_{1}, \ldots, t_{n}\right\rangle \equiv \lambda x . x t_{1} \ldots t_{n}$, where $x \in V, t_{i} \in \Lambda, x \notin F V\left(t_{i}\right), i=1, \ldots, n, n \geq 1$;
$U_{i}^{n} \equiv \lambda x_{1} \ldots x_{n} . x_{i}$, where $x_{j} \in V, \quad k \neq j \Rightarrow x_{k} \not \equiv x_{j}, \quad k, j=1, \ldots, n, 1 \leq i \leq n, n \geq 1$; $P_{i}^{n} \equiv \lambda x . x U_{i}^{n}$, where $x \in V, 1 \leq i \leq n, n \geq 1 ; \Omega \equiv(\lambda x . x x)(\lambda x . x x)$, where $x \in V$.

Untyped functional program P is the following system of equations:

$$
\left\{\begin{align*}
F_{1}= & t_{1}\left[F_{1}, \ldots, F_{n}\right] \tag{2}\\
& \ldots \\
F_{n}= & t_{n}\left[F_{1}, \ldots, F_{n}\right]
\end{align*}\right.
$$

where $F_{i} \in V, i \neq j \Rightarrow F_{i} \not \equiv F_{j}, \quad t_{i}\left[F_{1}, \ldots, F_{n}\right] \in \Lambda, \quad F V\left(t_{i}\left[F_{1}, \ldots, F_{n}\right]\right) \subset\left\{F_{1}, \ldots, F_{n}\right\}$, $i, j=1, \ldots, n, n \geq 1$.

A sequence of terms $\left(\tau_{1}, \ldots, \tau_{n}\right)$ will be a solution of the program P, if for all $i=1, \ldots, n$ we have:

$$
\tau_{i}={ }_{\beta} t_{i}\left[\tau_{1}, \ldots, \tau_{n}\right]
$$

We consider the solution $\left(\tau_{1}, \ldots, \tau_{n}\right)$ of the program P, where $\tau_{i} \equiv P_{i}^{n}\left(Z\left(\lambda x .\left\langle t_{1}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right], \ldots, t_{n}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right]\right\rangle\right)\right), x \in V, Z \in \Lambda$ and is a fixed point combinator, $i=1, \ldots, n$. The term τ_{1} is the basic semantics of the program P denoted by τ_{P}.

$$
\operatorname{Fix}(P, Z)=\left\{\left(v_{1}, \ldots, v_{k}, t_{0}\right) \mid \tau_{P} v_{1} \ldots v_{k} \rightarrow_{\beta} t_{0}, \quad t_{0} \in N F^{0}, v_{j} \in N F^{0}\right. \text { or }
$$ $\left.v_{j} \equiv \Omega, j=1, \ldots, k, \quad k \geq 0\right\}$.

Theorem 3. (On the invariance of the baic semantics of untyped functional programs). For any untyped functional program P and for any fixed point combinators Z_{1}, Z_{2} we have:

$$
\operatorname{Fix}\left(P, Z_{1}\right)=\operatorname{Fix}\left(P, Z_{2}\right)
$$

Proof. Follows from the results of [6].
Theorem 4. (On substitutions for untyped functional programs). Let τ_{P} be the basic semantics of an untyped functional program P of the form (2), $v_{1}, v_{2}, \ldots, v_{k}$ be terms, where $v_{j} \in N F^{0}$ or $v_{j} \equiv \Omega, \quad j=1, \ldots, k, \quad k \geq 0$ and $t_{0} \in N F^{0}$, then:

$$
\tau_{P} v_{1} \ldots v_{k} \rightarrow \rightarrow_{\beta} t_{0} \Leftrightarrow \exists s \geq 1, t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right] v_{1} v_{2} \ldots v_{k} \rightarrow_{\beta} t_{0}
$$

where $t_{i}^{0}\left[F_{1}, \ldots, F_{n}\right] \equiv F_{i}, \quad t_{i}^{r}\left[F_{1}, \ldots, F_{n}\right] \equiv t_{i}\left[t_{1}^{r-1}\left[F_{1}, \ldots, F_{n}\right], \ldots, t_{n}^{r-1}\left[F_{1}, \ldots, F_{n}\right]\right]$, $r \geq 1, i=1, \ldots, n, n \geq 1$.

Proof. Follows from the results of [5,6].
Lemma 2. Let P be an untyped functional program of the form (2) and Z be a fixed point combinator. Then, there exists a sequence of terms T_{0}, T_{1}, \ldots such that $T_{0} \equiv Z\left(\lambda x .\left\langle t_{1}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right], \ldots, t_{n}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right]\right\rangle\right)$ and for any $s \geq 0$ we have: $P_{i}^{n} T_{s} \rightarrow \rightarrow_{\beta} t_{i}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right], \quad 1 \leq i \leq n, n \geq 1$.

Proof. Let $t \equiv \lambda x .\left\langle t_{1}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right], \ldots, t_{n}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right]\right\rangle$, from the Lemma 1 it follows that there exists a sequence of the terms $Z_{0}^{t}, Z_{1}^{t}, Z_{2}^{t}, \ldots$ such that $Z_{s}^{t} \rightarrow \rightarrow_{\beta} t Z_{s+1}^{t}$ for any $s \geq 0$. Let $T_{s} \equiv Z_{s}^{t}$ for any $s \geq 0$, then:
$P_{i}^{n} T_{s} \rightarrow \rightarrow_{\beta} P_{i}^{n}\left(\left(\lambda x .\left\langle t_{1}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right], \ldots, t_{n}\left[P_{1}^{n} x, \ldots, P_{n}^{n} x\right]\right\rangle\right) T_{s+1}\right) \rightarrow_{\beta}$ $P_{i}^{n}\left(\left\langle t_{1}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right], \ldots, t_{n}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right]\right\rangle\right) \rightarrow{ }_{\beta} t_{i}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right]$.
3. Translation. Let M be a recursive, partially ordered set, which has a least element \perp and every element of M is comparable with itself and with \perp. Every $m \in M$ is mapped to an untyped term m^{\prime} in the following way:
if $m \in M \backslash\{\perp\}$, then $m^{\prime} \in N F^{0}$ and for any $m_{1}, m_{2} \in M \backslash\{\perp\}, m_{1} \neq m_{2} \Rightarrow m_{1}{ }^{\prime} \not \equiv m^{\prime}{ }^{\prime}$; if $m \equiv \perp$, then $m^{\prime} \equiv \Omega \equiv(\lambda x . x x)(\lambda x . x x)$.

We say that an untyped term $\Phi \lambda$-defines (see [3]) the function $f: M^{k} \rightarrow M$ ($k \geq 0$) with indeterminate values of arguments, if for any $m_{1}, \ldots, m_{k} \in M$ we have:
$f\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp \Rightarrow \Phi m_{1}{ }^{\prime} \ldots m_{k}{ }^{\prime} \rightarrow_{\beta} m^{\prime} ;$
$f\left(m_{1}, \ldots, m_{k}\right)=\perp \Rightarrow \Phi m_{1}{ }^{\prime} \ldots m_{k}{ }^{\prime}$ does not have a head normal form.
We consider typed terms using a recursive set of functions C, every $f \in C$ is a strong computable function with intermediate values of arguments, which has an untyped λ-term that λ-defines it. From [3] it follows, that every $f \in C$ is a strong computable, monotonic function with indeterminate values of arguments. Therefore, according to [8], there exists a canonical notion of δ-reduction for the set C. Let us consider the algorithm of translation of any typed term t to an untyped term t^{\prime} studied in [8]:
if $t \equiv m \in M$, then $t^{\prime} \equiv m^{\prime}$;
if $t \in C$, then $F V\left(t^{\prime}\right)=\emptyset$ and $t^{\prime} \lambda$-defines t;
if $t \equiv x \in V^{T}$, then $x^{\prime} \in V$ and for any $x_{1}, x_{2} \in V^{T}, x_{1} \not \equiv x_{2} \Rightarrow x_{1}{ }^{\prime} \not \equiv x_{2}{ }^{\prime}$;
if $t \equiv \tau\left(t_{1}, \ldots, t_{k}\right), k \geq 1$, then $t^{\prime} \equiv \tau^{\prime} t_{1}{ }^{\prime} \ldots t_{k}{ }^{\prime}$;
if $t \equiv \lambda x_{1} \ldots x_{n}[\tau], n \geq 1$, then $t^{\prime} \equiv \lambda x_{1}{ }^{\prime} \ldots x_{n}{ }^{\prime} \cdot \tau^{\prime}$.
The main result of [8] is the Lemma 3 (Theorem 3 in [$[8]$).

Lemma 3.

1. $t \in \Lambda_{M}^{T}, t \rightarrow \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\} \Rightarrow t^{\prime} \rightarrow_{\beta} m^{\prime} ;$
2. $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \rightarrow \rightarrow_{\beta \delta} \perp \Rightarrow t^{\prime}$ does not have a head normal form.

Let P be a typed functional program of the form (1) and P^{\prime} be the untyped functional program (the result of the translation) obtained by replacing typed terms for corresponding untyped terms in program P. Program P^{\prime} :

$$
\left\{\begin{array}{c}
F_{1}^{\prime}=t_{1}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] \tag{3}\\
\ldots \\
F_{n}^{\prime}=t_{n}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] .
\end{array}\right.
$$

Theorem 5. (On translation). Let $f_{P} \in\left[M^{k} \rightarrow M\right], k \geq 1$, be the basic semantics of a typed functional program P of the form (1) and let $\tau_{P^{\prime}}$ be the basic semantics of the untyped functional program P^{\prime} of the form (3), then for all $m_{1}, \ldots, m_{k} \in M$ we have:
$f_{P}\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp \Rightarrow \tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime} ;$
$f_{P}\left(m_{1}, \ldots, m_{k}\right)=\perp \Rightarrow \tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form.
Proof. Let $f_{P}\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp$, then, according to the Theorem 2, $\exists s \geq 1, t_{1}^{s}\left[F_{1}, \ldots, F_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow_{\beta \delta} m$, therefore, according to the point 1 of the Lemma 3, $t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$ and, according to the Theorem 4, $\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$.

Let $f_{P}\left(m_{1}, \ldots, m_{k}\right)=\perp$. There are 2 possible cases:
a) there exists $s \geq 1$ and term $b \in \Lambda$ such that
$t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} b$ and $F V(b)=\emptyset ;$
b) for any $s \geq 1$ and for any term $b \in \Lambda$ we have:
$t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow_{\beta} b \Rightarrow F V(b) \neq \emptyset$.

Case (a). Let Ω_{i} be a term corresponding to the least element of the type of variable F_{i} obtained by the operation of abstraction and using $\perp, \quad i=1, \ldots, n$. According to the Theorem $1, t_{1}^{s}\left[\Omega_{1}, \ldots, \Omega_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \sim \perp$, therefore, according to the Definition $\left[1\right.$ (point 2), $t_{1}^{s}\left[\Omega_{1}, \ldots, \Omega_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow \rightarrow_{\beta \delta} \perp$ and, according to the point 2 of the Lemma 3, the term $t_{1}^{\prime s}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form. Since $t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow_{\beta} b$ and $F V(b)=\emptyset$, then $t_{1}^{\prime s}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} b$ and the term b does not have a head normal form, therefore, the term $t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form. It follows that the term $t_{1}^{\prime s}\left[P_{1}^{n} T_{s}, \ldots, P_{n}^{n} T_{s}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form too (see [4]). According to the Lemma 2, $\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} t_{1}^{\prime s}\left[P_{1}^{n} T_{s}, \ldots, P_{n}^{n} T_{s}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ and, therefore, the term $\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form.

Case (b). If there exists such $s \geq 1$ that $t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form, then $t_{1}^{\prime s}\left[P_{1}^{n} T_{s}, \ldots, P_{n}^{n} T_{s}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form [4]. Since, according to the Lemma $2, \tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow \beta t_{1}^{\prime s}\left[P_{1}^{n} T_{s}, \ldots, P_{n}^{n} T_{s}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$, then the term $\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form.

The only remaining case is when for any $s \geq 1, t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ has a head normal form. We prove that these head normal forms have one of $F_{1}^{\prime}, \ldots, F_{n}^{\prime}$ as a head variable. We assume the opposite: there exists such $s \geq 1$ that $t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} \lambda x_{1} \ldots x_{h} \cdot y d_{1} \ldots d_{l}$, where $x_{1}, \ldots, x_{h}, y \in V, \quad y \notin\left\{F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right\}$, $d_{1}, \ldots, d_{l} \in \Lambda, \quad h, l \geq 0$. Let Ω_{i} be the term corresponding to the least element of the type of the variable F_{i} obtained by the operation of abstraction and using $\perp, i=1, \ldots, n$. According to the Theorem $1, t_{1}^{s}\left[\Omega_{1}, \ldots, \Omega_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \sim \perp$, therefore, according to the point 2 of the Definition $11, t_{1}^{s}\left[\Omega_{1}, \ldots, \Omega_{n}\right]\left(m_{1}, \ldots, m_{k}\right) \rightarrow \rightarrow \beta \delta \perp$ and, according to the point 2 of the Lemma 3, the term $t_{1}^{\prime s}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form. But $t_{1}^{\prime s}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right] m_{1}^{\prime}, \ldots, m_{k}^{\prime} \rightarrow \rightarrow_{\beta}$ $\lambda x_{1} \ldots x_{h} \cdot y d_{1}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right] \ldots d_{l}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{n}^{\prime}\right]$, which is a head normal form.

Let for any $s \geq 1 t_{1}^{\prime s}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime}$ have a head normal form and let its head variable be one of the $F_{1}^{\prime}, \ldots, F_{n}^{\prime}$.

Let $t_{1}^{\prime 1}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow_{\beta} \theta_{1}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] \in H N F$, then
$t_{1}^{\prime 2}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} \theta_{1}\left[t_{1}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right], \ldots, t_{n}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right]\right] \rightarrow \rightarrow_{\beta} \theta_{2}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] \in$ $H N F$ and so on. Therefore, for all $s \geq 1$ we have: $t_{1}^{s+1}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow_{\beta}$ $\theta_{s}\left[t_{1}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right], \ldots, t_{n}^{\prime}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right]\right] \rightarrow \rightarrow_{\beta} \theta_{s+1}\left[F_{1}^{\prime}, \ldots, F_{n}^{\prime}\right] \in H N F$ and the head variable is one of the variables $F_{1}^{\prime}, \ldots, F_{n}^{\prime}$.

According to the Lemma 2 , we have:
$\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} t_{1}^{\prime}\left[P_{1}^{n} T_{1}, \ldots, P_{n}^{n} T_{1}\right] m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta}$
$\theta_{1}\left[P_{1}^{n} T_{1}, \ldots, P_{n}^{n} T_{1}\right] \rightarrow \rightarrow_{\beta} \theta_{1}\left[t_{1}^{\prime}\left[P_{1}^{n} T_{2}, \ldots, P_{n}^{n} T_{2}\right], \ldots, t_{n}^{\prime}\left[P_{1}^{n} T_{2}, \ldots, P_{n}^{n} T_{2}\right]\right] \rightarrow \rightarrow_{\beta}$ $\theta_{2}\left[P_{1}^{n} T_{2}, \ldots, P_{n}^{n} T_{2}\right] \rightarrow \rightarrow_{\beta} \theta_{2}\left[t_{1}^{\prime}\left[P_{1}^{n} T_{3}, \ldots, P_{n}^{n} T_{3}\right], \ldots, t_{n}^{\prime}\left[P_{1}^{n} T_{3}, \ldots, P_{n}^{n} T_{3}\right]\right] \rightarrow \rightarrow_{\beta} \ldots \rightarrow \rightarrow_{\beta}$ $\theta_{s}\left[P_{1}^{n} T_{s}, \ldots, P_{n}^{n} T_{s}\right] \rightarrow \rightarrow \beta \theta_{s}\left[t_{1}^{\prime}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right], \ldots, t_{n}^{\prime}\left[P_{1}^{n} T_{s+1}, \ldots, P_{n}^{n} T_{s+1}\right]\right] \rightarrow \rightarrow_{\beta}$

In the reducing chain an infinite number of times the head β-redex is convoluted. Therefore, the term $\tau_{P^{\prime}} m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form.

REFERENCES

1. Nigiyan S.A. Functional Programming Languages. // Programming and Computer Software, 1991, № 5, p. 77-86.
2. Nigiyan S.A. On Interpretation of Functional Programming Languages. // Programming and Computer Software, 1993, v. 19, № 2, p. 71-78.
3. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, № 1, p. 52-60.
4. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland Publishing Company, 1981.
5. Nigiyan S.A., Avetisyan S.A. Semantics of Untyped Functional Programs. // Programming and Computer Software, 2002, v. 28, № 3, p. 119-126.
6. Hrachyan G.G. On Basic Semantics of Untyped Functional Programs. // Programming and Computer Software, 2009, v. 35, № 3, p. 121-135.
7. Budaghyan L.E. Formalizing the Notion of δ-Reduction in Monotonic Models of Typed λ-Calculus. // Algebra, Geometry \& Their Applications, 2002, v. 1, p. 48-57.
8. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ-reduction and on Translation of Typed λ-Terms into Untyped λ-Terms. // Proceedings of the YSU. Physical and Mathematical Science, 2017, v. 51, № 1, p. 46-52.

[^0]: * E-mail: nigiyan@ysu.am
 **E-mail: tigrankhondkaryan@gmail.com

