
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2017, 51(2), p. 177–186

I n f o r m a t i c s

ON TRANSLATION OF TYPED FUNCTIONAL PROGRAMS INTO
UNTYPED FUNCTIONAL PROGRAMS

S. A. NIGIYAN ∗, T. V. KHONDKARYAN∗∗

Chair of Programming and Information Technologies YSU, Armenia

In this paper typed and untyped functional programs are considered. Typed
functional programs use variables of any order and constants of order ≤ 1,
where constants of order 1 are strong computable, λ -definable functions with
indeterminate values of arguments. The basic semantics of a typed functional
program is a function with indeterminate values of arguments, which is the main
component of its least solution. The basic semantics of an untyped functional
program is an untyped λ -term, which is defined by means of a fixed point com-
binator. An algorithm that translates typed functional program P into untyped
functional program P′ is suggested. It is proved that the basic semantics of the
program P′ λ -defines the basic semantics of the program P.

MSC2010: 68N18.

Keywords: typed functional program, untyped functional program, basic
semantics, translation, λ -definability.

Introduction. The paper is devoted to typed and untyped functional programs.
A typed functional program is a system of equations (with separating variables) in
the monotonic models of typed λ -calculus. Typed functional programs use variables
of any order and constants of order ≤ 1, where constants of order 1 are strong
computable, λ -definable functions with indeterminate values of arguments. The
basic semantics of the typed functional program is a function with indeterminate
values of arguments, which is the main component of its least solution (see [1–3]).
An untyped functional program is a system of equations (with separating variables) in
the untyped λ -calculus. The basic semantics of an untyped functional program is an
untyped λ -term, which is defined by means of a fixed point combinator (see [4–6]).
An algorithm that translates typed functional program P into untyped functional
program P′ is suggested. It is proved that the basic semantics of the program P′

λ -defines the basic semantics of the program P.

∗ E-mail: nigiyan@ysu.am ∗∗E-mail: tigrankhondkaryan@gmail.com



178 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(2), p. 177–186.

Typed Functional Programs. The definitions of this section can be found
in [1–3, 7, 8]. Let M be a partially ordered set, which has a least element ⊥, which
corresponds to an indeterminate value. For every m∈M we have: ⊥v m and mvm,
where v is a partial ordering on the set M.

Let us define the set of types (denoted by Types).
1. M ∈ Types;
2. If β ,α1, . . . ,αk ∈ Types (k > 0), then the set of all monotonic mappings

from α1× . . .×αk into β (denoted by [α1× . . .×αk→ β ]) belongs to Types.
Let α ∈ Types, then the order of type α (denoted by ord(α)) will be a

natural number, which is defined in the following way: if α = M, then
ord(α) = 0, if α = [α1 × ...× αk → β ], where β ,α1, ...αk ∈ Types, k > 0, then
ord(α) = 1+max(ord(α1), . . . , ord(αk),ord(β )). If x is a variable of type α and a
constant c ∈ α , then ord(x) = ord(c) = ord(α).

Let α ∈ Types and V T
α be a countable set of variables of type α , then

V T =
⋃

α∈Types
V T

α is the set of all variables. The set of all terms denoted by

ΛT =
⋃

α∈Types
ΛT

α , where ΛT
α is the set of terms of type α , is defined the

following way:
1. If c ∈ α , α ∈ Types, then c ∈ ΛT

α ;
2. If x ∈V T

α ,α ∈ Types, then x ∈ ΛT
α ;

3. If τ ∈ ΛT
[α1×...×αk→β ], ti ∈ ΛT

αi
, where β ,αi ∈ Types, i = 1, . . . ,k, k ≥ 1,

then τ(t1, . . . , tk) ∈ ΛT
β

(the operation of application);
4. If τ ∈ ΛT

β
, xi ∈ V T

αi
, where β ,αi ∈ Types, i 6= j⇒ xi 6= x j, i, j = 1, . . . ,k,

k ≥ 1, then λx1 . . .xk[τ] ∈ ΛT
[α1×...×αk→β ] (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as the
notion of a free variable are introduced in the conventional way. The set of all free
variables of a term t is denoted by FV (t). A term which doesn’t contain free variables
is called a closed term. Terms t1 and t2 are said to be congruent (which is denoted
by t1 ≡ t2), if one term can be obtained from the other by renaming bound variables.
In what follows congruent terms are considered identical.

Let t ∈ ΛT
α , α ∈ Types and FV (t) ⊂ {y1, . . . ,yn}, ȳ0 = 〈y0

1, . . . ,y
0
n〉, where

yi ∈V T
βi
, y0

i ∈ βi, βi ∈ Types, i= 1, . . . ,n, n≥ 0. The value of the term t for the values
of the variables y1, . . . ,yn equal to ȳ0 = 〈y0

1, . . . ,y
0
n〉 is denoted by Valȳ0(t) and defined

as follows:
1. If t ≡ c and c ∈ α , then Valȳ0(c) = c;
2. If t ≡ x,x ∈V T

α , then Valȳ0(x) = y0
i , where FV (x) = {x} ⊂ {y1, . . . ,yn} and

x≡ yi, i = 1, . . . ,n, n≥ 1;
3. If t ≡ τ(t1, ..., tk) ∈ ΛT

α , where τ ∈ ΛT
[α1×...×αk→α], ti ∈ ΛT

αi
, αi ∈ Types;

i = 1, . . . ,k, k ≥ 1, then Valȳ0(τ(t1, . . . , tk)) =Valȳ0(τ)(Valȳ0(t1), . . . ,Valȳ0(tk));
4. If t ≡ λx1 . . .xk[τ] ∈ ΛT

α , where α = [α1× . . .×αk → β ],τ ∈ ΛT
β
,xi ∈ V T

αi
,

β ,αi ∈ Types, i = 1, . . . ,k, k≥ 1, then Valȳ0(λx1 . . .xk[τ]) ∈ [α1× . . .×αk→ β ] and
is defined as follows: let {y1, . . . ,yn} \ {x1, . . . ,xk} = {y j1 , . . . ,y js}, s ≥ 0, and



Nigiyan S. A., Khondkaryan T. V. On Translation of Typed Functional Programs... 179

z̄0 = 〈y0
j1 , . . . ,y

0
js〉, then for any x̄0 = 〈x0

1, . . . ,x
0
k〉, where x0

i ∈ αi, i = 1, . . . ,k,
Valȳ0(λx1 . . .xk[τ])(x0

1, . . . ,x
0
k) =Valx̄0,z̄0(τ), where x̄0, z̄0 = 〈x0

1, . . . ,x
0
k ,y

0
j1 , . . . ,y

0
js〉.

It follows from [1], that for any ȳ0 = 〈y0
1, . . . ,y

0
n〉 and ȳ1 = 〈y1

1, . . . ,y
1
n〉

such that ȳ0 v ȳ1, where y0
i ,y

1
i ∈ βi (1≤ i≤ n), we have the following:

1. Valȳ0(t) ∈ α;
2. Valȳ0(t)vValȳ1(t).
Let terms t1, t2 ∈ ΛT

α , α ∈ Types, FV (t1)∪FV (t2) = {y1, . . . ,yn}, yi ∈V T
βi
,

βi ∈ Types, i = 1, . . . ,n, n≥ 0, then terms t1 and t2 are called equivalent (denoted by
t1∼ t2), if for any ȳ0 = 〈y0

1, . . . ,y
0
n〉, where y0

i ∈ βi, i= 1, . . . ,n, we have the following:
Valȳ0(t1) =Valȳ0(t2). A term t ∈ ΛT

α ,α ∈ Types, is called a constant term with a ∈ α

value, if t ∼ a.
To show mutually different variables of interest x1, . . . ,xk, k ≥ 1, of a term t,

the notation t[x1, . . . ,xk] is used. The notation t[t1, . . . , tk] denotes the term obtained
by the simultaneous substitution of the terms t1, . . . , tk for all free occurrences of
variables x1, . . . ,xk respectively, where xi ∈V T

αi
, i 6= j⇒ xi 6≡ x j, ti ∈ ΛT

αi
,αi ∈ Types,

i, j = 1, . . . ,k, k ≥ 1. A substitution is said to be admissible, if all free variables of
the term being substituted remain free after the substitution. We will consider only
admissible substitutions.

A term t ∈ΛT with a fixed occurrence of a subterm τ1 ∈ΛT
α , where α ∈ Types,

is denoted by tτ1 and a term with this occurrence of τ1 replaced by τ2, where τ2 ∈ΛT
α ,

is denoted by tτ2 .
Further, we assume that M is a recursive set and considered terms use

variables of any order and constants of order ≤ 1, where constants of order 1 are
strong computable, monotonic functions with indeterminate values of arguments. A
function f : Mk → M,k ≥ 1, with indeterminate values of arguments is said to be
strong computable, if there exists an algorithm, which stops with value f (m1, . . . ,mk)
for all m1, . . . ,mk ∈ M (see [3]). We suppose that each strong computable function
with indeterminate values of arguments is given by its algorithm. Hereafter all such
terms will be denoted by ΛT and all such terms of type α will be denoted by ΛT

α .
A term of the form λx1 . . .xk[τ[x1, . . . ,xk]](t1, . . . , tk), where xi ∈ V T

αi
, i 6= j⇒

xi 6≡ x j, τ ∈ ΛT , ti ∈ ΛT
αi
,αi ∈ Types, i, j = 1, . . . ,k, k ≥ 1, is called a β -redex, its

convolution is the term τ[t1, . . . , tk].
A term t1 is said to be obtained from a term t0 by one-step β -reduction (denoted

by t0 →β t1 ), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a β -redex and τ1 is its convolution. A term
t is said to be obtained from a term t0 by β -reduction (denoted by t0 →→β t ), if
there exists a finite sequence of terms t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t and
ti→β ti+1, where i = 1, . . . ,n−1.

δ -redex has a form f (t1, . . . , tk), where f ∈ [Mk → M], ti ∈ ΛT
M, i = 1, . . . ,k,

k ≥ 1, its convolution is either m ∈M and in this case f (t1, . . . , tk) ∼ m or a subterm
ti and in this case f (t1, . . . , tk)∼ ti, i = 1, . . . ,k. A term t1 is said to be obtained from
a term t0 by one-step δ -reduction (denoted by t0 →δ t1), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a
δ -redex and τ1 is its convolution. A term t is said to be obtained from a term t0 by
δ -reduction (denoted by t0→→δ t), if there exists a finite sequence of terms t1, . . . , tn



180 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(2), p. 177–186.

(n≥ 1) such that t1 ≡ t0, tn ≡ t and ti→δ ti+1, where i = 1, . . . ,n−1.
A term t1 is said to be obtained from a term t0 by one-step βδ -reduction

(denoted by t0 →βδ t1 ), if either t0 →β t1 or t0 →δ t1. A term t is said to be
obtained from a term t0 by βδ -reduction (denoted by t0 →→βδ t ), if there exists
a finite sequence of terms t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t and ti→βδ ti+1,
where i = 1, . . . ,n− 1. It follows from [7], that if t1 →→βδ t2, then t1 ∼ t2, where
t1, t2 ∈ ΛT

α ,α ∈ Types.
A term containing no βδ -redexes is called a normal form. The set of all normal

forms is denoted by NFT . For every term t ∈ ΛT there exists a term τ ∈ NFT such
that t→→βδ τ (see [7]).

A notion of δ -reduction is called a single-valued notion of δ -reduction,
if δ is a single-valued relation, i.e. if 〈τ0,τ1〉 ∈ δ and 〈τ0,τ2〉 ∈ δ , then τ1 ≡ τ2,
where τ0,τ1,τ2 ∈ ΛT

M.
A notion of δ -reduction is called effective notion of δ -reduction, if there

exists an algorithm, which for any term f (t1, . . . , tk), where f ∈ [Mk→M], ti ∈ ΛT
M,

i = 1, . . . ,k, k ≥ 1, gives its convolution, if f (t1, . . . , tk) is a δ -redex and stops with a
negative answer otherwise.

D e f i n i t i o n 1. An effective, single-valued notion of δ -reduction is called
a canonical notion of δ -reduction if:

1. t ∈ ΛT
M, t ∼ m, m ∈M \{⊥}⇒ t→→βδ m;

2. t ∈ ΛT
M, FV (t) = /0, t ∼⊥⇒ t→→βδ ⊥.

In [8] it was proved that for every recursive set of strong computable, mono-
tonic functions with indeterminate values of arguments there exists a canonical notion
of δ -reduction. Further we will only use the canonical notion of δ -reduction.

Typed functional program P is the following system of equations:
F1 = t1[F1, . . . ,Fn],

. . .

Fn = tn[F1, . . . ,Fn],

(1)

where Fi ∈Vαi , i 6= j⇒ Fi 6≡ Fj, ti[F1, ...,Fn] ∈ Λαi ,FV (ti[F1, . . . , .Fn])⊂ {F1, . . . ,Fn},
αi ∈ Types, i, j = 1, . . . ,n, n≥ 1,α1 = [Mk→M], k ≥ 1.

We consider the mapping ΨP : α1 × . . . × αn → α1 × . . . × αn, which
is defined as follows: if ḡ = 〈g1, . . . ,gn〉, where gi ∈ αi, i = 1, . . . ,n, then
ΨP(ḡ) = 〈Valḡ(t1[F1, . . . ,Fn]), . . . ,Valḡ(tn[F1, . . . ,Fn])〉. ḡ is said to be the solution
of the program P, if ΨP(ḡ) = ḡ, i.e. 〈Valḡ(t1[F1, . . . ,Fn]), . . . ,Valḡ(tn[F1, . . . ,Fn])〉 =
〈g1, . . . ,gn〉. Every typed functional program P has a least solution (see [1]).
Let 〈 f1, . . . , fn〉 ∈ α1× . . .×αn be the least solution of P, then the first component
f1 ∈ [Mk→M] of the least solution is said to be the basic semantics of the program
P and is denoted by fP.

T h e o r e m 1. (On basic semantics of typed functional programs). Let
fP ∈ [Mk → M], k ≥ 1, be the basic semantics of a typed functional program P
of the form (1), then for all m1, . . . ,mk ∈M we have:

fP(m1, . . .mk) = sup{Ψs
P(Ω̄)1(m1, . . . ,mk)

∣∣s < ω},



Nigiyan S. A., Khondkaryan T. V. On Translation of Typed Functional Programs... 181

where Ω̄ is the least element of the set α1× . . .×αn, Ψ0
P(Ω̄) = Ω̄, Ψ

s+1
P (Ω̄) =

ΨP(Ψ
s
P(Ω̄)) and Ψs

P(Ω̄)1 is the first component of the Ψs
P(Ω̄), s < ω , ω is the ordinal

corresponding to the set of the natural numbers.
P r o o f . Follows from the results of [2].
T h e o r e m 2. (On substitutions for typed functional programs). Let

fP ∈ [Mk → M], k ≥ 1, be the basic semantics of a typed functional program P
of the form (1), then for all m1, . . . ,mk ∈M we have:

fP(m1, . . . ,mk) = m 6= ⊥⇔ ∃s ≥ 1, ts
1[F1, . . . ,Fn](m1, . . . ,mk)→→βδ m 6= ⊥,

where t0
i [F1, . . . ,Fn] ≡ Fi, tr

i [F1, . . . ,Fn] ≡ ti[tr−1
1 [F1, . . . ,Fn], . . . , tr−1

n [F1, . . . ,Fn]],
r ≥ 1, i = 1, . . . ,n, n≥ 1.

P r o o f . If fP(m1, . . . ,mk) = m 6= ⊥, then, according to the Theorem 1,
∃s ≥ 1,Ψs

P(Ω̄)1(m1, . . . ,mk) = m, where Ω̄ is the least element of the set
α1 × . . . × αn. Therefore, ValΩ̄(t

s
1[F1, . . . ,Fn](m1, . . . ,mk)) = m. Since for every

ḡ ∈ α1 × . . . × αn, Ω̄ v ḡ, then Valḡ(ts
1[F1, . . . ,Fn](m1, . . . ,mk)) = m and

ts
1[F1, . . . ,Fn](m1, . . . ,mk) ∼ m. Therefore, according to the Definition 1 (point 1),

ts
1[F1, . . . ,Fn](m1, . . . ,mk)→→βδ m.

If ∃s ≥ 1, ts
1[F1, . . . ,Fn](m1, . . . ,mk) →→βδ m 6= ⊥, then, according to [7],

ts
1[F1, . . . ,Fn](m1, . . . ,mk) ∼ m and ValΩ̄(t

s
1[F1, . . . ,Fn](m1, . . . ,mk)) = m. Therefore,

Ψs
P(Ω̄)1(m1, . . . ,mk) = m and, according to the Theorem 1, fP(m1, . . . ,mk) = m. �

Untyped Functional Programs. The definitions of this section can be found
in [4–6]. Let us fix a countable set of variables V . The set Λ of terms is defined as
follows:

1. If x ∈V , then x ∈ Λ;
2. If t1, t2 ∈ Λ, then (t1t2) ∈ Λ (the operation of application);
3. If x ∈V and t ∈ Λ, then (λxt) ∈ Λ (the operation of abstraction).
The following shorthand notations are introduced: a term (...(t1t2)...tk), where

ti ∈Λ, i= 1, . . . ,k, k > 1, is denoted by t1t2 . . . tk and a term (λx1(λx2(. . .(λxnt) . . .))),
where x j ∈V, j = 1, . . . ,n, n > 0, t ∈ Λ, is denoted by λx1x2 . . .xn.t.

The notions of free and bound occurrences of variables in terms as well as
the notion of free variable are introduced in the conventional way. The set of all
free variables of a term t is denoted by FV (t). A term, which does not contain free
variables, is called a closed term. Terms t1 and t2 are said to be congruent (which is
denoted by t1 ≡ t2), if one term can be obtained from the other by renaming bound
variables. In what follows congruent terms are considered identical.

To show mutually different variables of interest x1, . . . ,xk, k≥ 1, of a term t the
notation t[x1, . . . ,xk] is used. The notation t[t1, . . . , tk] denotes the term obtained by the
simultaneous substitution of the terms t1, . . . , tk for all free occurrences of variables
x1, . . . ,xk respectively, i 6= j⇒ xi 6≡ x j, i, j = 1, . . . ,k, k ≥ 1. A substitution is said
to be admissible, if all free variables of the term being substituted remain free after
the substitution. We will consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ1 is denoted by tτ1 and a term
with this occurrence of τ1 replaced by a term τ2 is denoted by tτ2 .

A term of the form (λx.t[x])τ is called a β -redex and the term t[τ] is called its



182 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(2), p. 177–186.

convolution. A term t1 is said to be obtained from a term t0 by one-step β -reduction
(denoted by t0 →β t1 ), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a β -redex and τ1 is its convolution.
A term t is said to be obtained from a term t0 by β -reduction (denoted by t0→→β t),
if there exists a finite sequence of terms t1, . . . , tn (n≥ 1) such that t1 ≡ t0, tn ≡ t and
ti→β ti+1, where i = 1, . . . ,n−1. A term containing no β -redexes is called a normal
form. The set of all normal forms is denoted by NF and the set of all closed normal
forms is denoted by NF0. A term t is said to have a normal form, if there exists a
term τ such that τ ∈NF and t→→β τ . Of the Church–Rosser theorem [4] it follows,
that if t→→β τ1, t→→β τ2,τ1,τ2 ∈ NF , then τ1 ≡ τ2.

If a term has a form λx1 . . .xk.xt1 . . . tn, where x1, . . . ,xk,x ∈V, t1, . . . , tn ∈ Λ,
k,n ≥ 0, it is called a head normal form and x is called its head variable. The set of
all head normal forms is denoted by HNF . A term t is said to have a head normal
form, if there exists a term τ such that τ ∈ HNF and t →→β τ . It is known that
NF ⊂ HNF , but HNF 6⊂ NF (see [4]).

Let λx1, . . . ,xk.((λx.t)τ)t1 . . . tn be a term, where x1, . . . ,xk,x ∈V, t1, . . . , tn, t,
τ ∈ Λ, k,n≥ 0, then the β -redex (λx.t)τ is called a head β -redex. It is obvious that
every head β -redex of the term is its left β -redex, but not every left β -redex of the
term is its head β -redex.

Recall, that if a term has a head normal form, then the reducing chain, where
always the head β -redex is chosen, leads to a head normal form, and if the term has a
normal form, then the reducing chain, where always the left β -redex is chosen, leads
to the normal form (see [4]).

Let us give the notion of β -equality (denoted by =β ):

1. t1→→β t2⇒ t1 =β t2;

2. t1 =β t2⇒ t2 =β t1;

3. t1 =β t2, t2 =β t3⇒ t1 =β t3, where t1, t2, t3 ∈ Λ.

A term Z ∈ Λ is called a fixed point combinator, if for all terms t ∈ Λ we have:
Zt =β t(Zt).

L e m m a 1. Let Z be a fixed point combinator and a term t ∈ Λ, then there
exists a sequence of terms Zt

0,Z
t
1,Z

t
2, . . . such that Zt

0 ≡ Zt and Zt
s →→β tZt

s+1,
s = 0,1,2, . . .

P r o o f . Let x ∈V and Zx
0 ≡ Zx =β x(Zx), according to the Church–Rosser’s

theorem, there exists such term Zx
1 that x(Zx)→→β xZx

1 and Zx
0→→β xZx

1, therefore,
Zx

1 =β Zx =β x(Zx) and there exists such term Zx
2 that x(Zx)→→β xZx

2 and Zx
1→→β

xZx
2 and so on. Thus, for every s ≥ 0 we get a term Zx

s , such that Zx
s =β Zx =β

x(Zx) and there exists a term Zx
s+1 such that x(Zx)→→β xZx

s+1 and Zx
s →→ xZx

s+1.
Let Zx

s ≡ Zx
s [x],Z

x
s+1 ≡ Zx

s+1[x] and Zt
s ≡ Zx

s [t],Z
t
s+1 ≡ Zx

s+1[t], then Zt
s →→β tZt

s+1,
s = 0,1,2, . . . �

We introduce notations for some terms:
〈t1, . . . , tn〉 ≡ λx.xt1 . . . tn, where x ∈V, ti ∈ Λ, x 6∈ FV (ti), i = 1, . . . ,n, n≥ 1;

Un
i ≡ λx1 . . .xn.xi, where x j ∈V, k 6= j⇒ xk 6≡ x j, k, j = 1, . . . ,n, 1≤ i≤ n, n≥ 1;

Pn
i ≡ λx.xUn

i , where x ∈V, 1≤ i≤ n, n≥ 1; Ω≡ (λx.xx)(λx.xx), where x ∈V.



Nigiyan S. A., Khondkaryan T. V. On Translation of Typed Functional Programs... 183

Untyped functional program P is the following system of equations:
F1 = t1[F1, . . . ,Fn],

. . .

Fn = tn[F1, . . . ,Fn],

(2)

where Fi ∈ V, i 6= j⇒ Fi 6≡ Fj, ti[F1, ...,Fn] ∈ Λ, FV (ti[F1, . . . ,Fn]) ⊂ {F1, . . . ,Fn},
i, j = 1, . . . ,n, n≥ 1.

A sequence of terms (τ1, . . . ,τn) will be a solution of the program P, if for all
i = 1, . . . ,n we have:

τi =β ti[τ1, . . . ,τn].

We consider the solution (τ1, . . . ,τn) of the program P, where
τi ≡ Pn

i (Z(λx.〈t1[Pn
1 x, . . . ,Pn

n x], . . . , tn[Pn
1 x, . . . ,Pn

n x]〉)), x ∈ V, Z ∈ Λ and is a fixed
point combinator, i = 1, . . . ,n. The term τ1 is the basic semantics of the program P
denoted by τP.

Fix(P,Z) = {(υ1, . . . ,υk, t0)|τPυ1 . . .υk →→β t0, t0 ∈ NF0, υ j ∈ NF0 or
υ j ≡Ω, j = 1, . . . ,k, k ≥ 0}.

T h e o r e m 3. (On the invariance of the baic semantics of untyped func-
tional programs). For any untyped functional program P and for any fixed point
combinators Z1,Z2 we have:

Fix(P,Z1) = Fix(P,Z2).

P r o o f . Follows from the results of [6].
T h e o r e m 4. (On substitutions for untyped functional programs). Let

τP be the basic semantics of an untyped functional program P of the form (2),
υ1,υ2, . . . ,υk be terms, where υ j ∈ NF0 or υ j ≡ Ω, j = 1, . . . ,k, k ≥ 0 and
t0 ∈ NF0, then:

τPυ1 . . .υk→→β t0⇔∃s≥ 1, ts
1[F1, . . . ,Fn]υ1υ2 . . .υk→→β t0,

where t0
i [F1, . . . ,Fn] ≡ Fi, tr

i [F1, . . . ,Fn] ≡ ti[tr−1
1 [F1, . . . ,Fn], . . . , tr−1

n [F1, . . . ,Fn]],
r ≥ 1, i = 1, . . . ,n, n≥ 1.

P r o o f . Follows from the results of [5, 6].
L e m m a 2. Let P be an untyped functional program of the form (2) and Z

be a fixed point combinator. Then, there exists a sequence of terms T0,T1, . . . such
that T0 ≡ Z(λx.〈t1[Pn

1 x, . . . ,Pn
n x], . . . , tn[Pn

1 x, . . . ,Pn
n x]〉) and for any s ≥ 0 we have:

Pn
i Ts→→β ti[Pn

1 Ts+1, . . . ,Pn
n Ts+1], 1≤ i≤ n, n≥ 1.

P r o o f . Let t ≡ λx.〈t1[Pn
1 x, . . . ,Pn

n x], . . . , tn[Pn
1 x, . . . ,Pn

n x]〉, from the Lemma 1
it follows that there exists a sequence of the terms Zt

0,Z
t
1,Z

t
2, . . . such that

Zt
s→→β tZt

s+1 for any s≥ 0. Let Ts ≡ Zt
s for any s≥ 0, then:

Pn
i Ts→→β Pn

i ((λx.〈t1[Pn
1 x, ...,Pn

n x], ..., tn[Pn
1 x, ...,Pn

n x]〉)Ts+1)→→β

Pn
i (〈t1[Pn

1 Ts+1, ...,Pn
n Ts+1], ..., tn[Pn

1 Ts+1, ...,Pn
n Ts+1]〉)→→β ti[Pn

1 Ts+1, ...,Pn
n Ts+1]. �

3. Translation. Let M be a recursive, partially ordered set, which has a least
element ⊥ and every element of M is comparable with itself and with ⊥. Every
m ∈M is mapped to an untyped term m′ in the following way:

if m∈M\{⊥}, then m′ ∈NF0 and for any m1,m2 ∈M\{⊥},m1 6=m2⇒m1
′ 6≡m2

′;
if m≡⊥, then m′ ≡Ω≡ (λx.xx)(λx.xx).



184 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(2), p. 177–186.

We say that an untyped term Φ λ -defines (see [3]) the function f : Mk → M
(k ≥ 0) with indeterminate values of arguments, if for any m1, . . . ,mk ∈M we have:

f (m1, . . . ,mk) = m 6=⊥⇒Φm1
′ . . .mk

′→→β m′;
f (m1, . . . ,mk) =⊥⇒Φm1

′ . . .mk
′ does not have a head normal form.

We consider typed terms using a recursive set of functions C, every f ∈ C is
a strong computable function with intermediate values of arguments, which has an
untyped λ -term that λ -defines it. From [3] it follows, that every f ∈ C is a strong
computable, monotonic function with indeterminate values of arguments. Therefore,
according to [8], there exists a canonical notion of δ -reduction for the set C. Let
us consider the algorithm of translation of any typed term t to an untyped term t ′

studied in [8]:
if t ≡ m ∈M, then t ′ ≡ m′;
if t ∈C, then FV (t ′) = /0 and t ′ λ -defines t;
if t ≡ x ∈V T , then x′ ∈V and for any x1,x2 ∈V T , x1 6≡ x2⇒ x1

′ 6≡ x2
′;

if t ≡ τ(t1, . . . , tk), k ≥ 1, then t ′ ≡ τ ′t1′ . . . tk′;
if t ≡ λx1 . . .xn[τ], n≥ 1, then t ′ ≡ λx1

′ . . .xn
′.τ ′.

The main result of [8] is the Lemma 3 (Theorem 3 in [8]).
L e m m a 3 .
1. t ∈ ΛT

M, t→→βδ m, m ∈M \{⊥}⇒ t ′→→β m′;
2. t ∈ ΛT

M, FV (t) = /0, t→→βδ ⊥⇒ t ′ does not have a head normal form.

Let P be a typed functional program of the form (1) and P′ be the untyped
functional program (the result of the translation) obtained by replacing typed terms
for corresponding untyped terms in program P. Program P′:

F ′1 = t ′1[F
′

1, . . . ,F
′

n],

. . .

F ′n = t ′n[F
′

1, . . . ,F
′

n].

(3)

T h e o r e m 5. (On translation). Let fP ∈ [Mk→M],k ≥ 1, be the basic se-
mantics of a typed functional program P of the form (1) and let τP′ be the
basic semantics of the untyped functional program P′ of the form (3), then for all
m1, . . . ,mk ∈M we have:

fP(m1, . . . ,mk) = m 6=⊥⇒ τP′m′1 . . .m
′
k→→β m′;

fP(m1, . . . ,mk) =⊥⇒ τP′m′1 . . .m
′
k does not have a head normal form.

P r o o f . Let fP(m1, . . . ,mk) = m 6= ⊥, then, according to the Theorem 2,
∃s ≥ 1, ts

1[F1, . . . ,Fn](m1, . . . ,mk) →→βδ m, therefore, according to the point 1 of
the Lemma 3, t ′s1 [F

′
1, . . . ,F

′
n]m
′
1 . . .m

′
k →→β m′ and, according to the Theorem 4,

τP′m′1 . . .m
′
k→→β m′.

Let fP(m1, . . . ,mk) =⊥. There are 2 possible cases:
a) there exists s≥ 1 and term b ∈ Λ such that

t ′s1 [F
′

1, . . . ,F
′

n]m
′
1 . . .m

′
k→→β b and FV (b) = /0;

b) for any s≥ 1 and for any term b ∈ Λ we have:
t ′s1 [F

′
1, . . . ,F

′
n]m
′
1 . . .m

′
k→→β b⇒ FV (b) 6= /0.



Nigiyan S. A., Khondkaryan T. V. On Translation of Typed Functional Programs... 185

Case (a). Let Ωi be a term corresponding to the least element of the type
of variable Fi obtained by the operation of abstraction and using ⊥, i = 1, . . . ,n.
According to the Theorem 1, ts

1[Ω1, . . . ,Ωn](m1, . . . ,mk)∼⊥, therefore, according to
the Definition 1 (point 2), ts

1[Ω1, . . . ,Ωn](m1, . . . ,mk)→→βδ ⊥ and, according to the
point 2 of the Lemma 3, the term t ′s1 [Ω

′
1, . . . ,Ω

′
n]m
′
1 . . .m

′
k does not have

a head normal form. Since t ′s1 [F
′

1, . . . ,F
′

n]m
′
1 . . .m

′
k →→β b and FV (b) = /0, then

t ′s1 [Ω
′
1, . . . ,Ω

′
n]m
′
1 . . .m

′
k →→β b and the term b does not have a head normal form,

therefore, the term t ′s1 [F
′

1, . . . ,F
′

n]m
′
1 . . .m

′
k does not have a head normal form. It

follows that the term t ′s1 [P
n
1 Ts, . . . ,Pn

n Ts]m′1 . . .m
′
k does not have a head normal form too

(see [4]). According to the Lemma 2, τP′m′1 . . .m
′
k →→β t ′s1 [P

n
1 Ts, . . . ,Pn

n Ts]m′1 . . .m
′
k

and, therefore, the term τP′m′1 . . .m
′
k does not have a head normal form.

Case (b). If there exists such s ≥ 1 that t ′s1 [F
′

1, . . .F
′

n]m
′
1 . . .m

′
k does not have a

head normal form, then t ′s1 [P
n
1 Ts, . . . ,Pn

n Ts]m′1 . . .m
′
k does not have a head normal form

[4]. Since, according to the Lemma 2, τP′m′1 . . .m
′
k→→β t ′s1 [P

n
1 Ts, . . . ,Pn

n Ts]m′1 . . .m
′
k,

then the term τP′m′1 . . .m
′
k does not have a head normal form.

The only remaining case is when for any s ≥ 1, t ′s1 [F
′

1, . . . ,F
′

n]m
′
1 . . .m

′
k has

a head normal form.We prove that these head normal forms have one of F ′1, . . . ,F
′

n
as a head variable. We assume the opposite: there exists such s ≥ 1 that
t ′s1 [F

′
1, ...,F

′
n]m
′
1...m

′
k→→β λx1...xh.yd1...dl, where x1, ...,xh,y ∈V, y 6∈ {F ′1, ...,F ′n},

d1, . . . ,dl ∈ Λ, h, l ≥ 0. Let Ωi be the term corresponding to the least element
of the type of the variable Fi obtained by the operation of abstraction and using
⊥, i = 1, . . . ,n. According to the Theorem 1, ts

1[Ω1, . . . ,Ωn](m1, . . . ,mk) ∼ ⊥, there-
fore, according to the point 2 of the Definition 1, ts

1[Ω1, . . . ,Ωn](m1, . . . ,mk)→→βδ ⊥
and, according to the point 2 of the Lemma 3, the term t ′s1 [Ω

′
1, . . . ,Ω

′
n]m
′
1 . . .m

′
k does

not have a head normal form. But t ′s1 [Ω
′
1, . . . ,Ω

′
n]m
′
1, . . . ,m

′
k→→β

λx1 . . .xh.yd1[Ω
′
1, . . . ,Ω

′
n] . . .dl[Ω

′
1, . . . ,Ω

′
n], which is a head normal form.

Let for any s ≥ 1 t ′s1 [F
′

1, . . . ,F
′

n]m
′
1 . . .m

′
k have a head normal form and let its

head variable be one of the F ′1, . . . ,F
′

n.
Let t ′11 [F ′1, . . . ,F

′
n]m
′
1 . . .m

′
k→→β θ1[F ′1, . . . ,F

′
n] ∈ HNF , then

t ′21 [F ′1, . . . ,F
′

n]m
′
1 . . .m

′
k→→β θ1[t ′1[F

′
1, . . . ,F

′
n], . . . , t

′
n[F
′

1, . . . ,F
′

n]]→→β θ2[F ′1, . . . ,F
′

n]∈
HNF and so on. Therefore, for all s ≥ 1 we have: t ′s+1

1 [F ′1, . . . ,F
′

n]m
′
1 . . .m

′
k →→β

θs[t ′1[F
′

1, . . . ,F
′

n], . . . , t
′
n[F
′

1, . . . ,F
′

n]] →→β θs+1[F ′1, . . . ,F
′

n] ∈ HNF and the head
variable is one of the variables F ′1, . . . ,F

′
n.

According to the Lemma 2, we have:
τP′m′1 . . .m

′
k→→β t ′1[P

n
1 T1, . . . ,Pn

n T1]m′1 . . .m
′
k→→β

θ1[Pn
1 T1, . . . ,Pn

n T1]→→β θ1[t ′1[P
n
1 T2, . . . ,Pn

n T2], . . . , t ′n[P
n
1 T2, . . . ,Pn

n T2]]→→β

θ2[Pn
1 T2, . . . ,Pn

n T2]→→β θ2[t ′1[P
n
1 T3, . . . ,Pn

n T3], . . . , t ′n[P
n
1 T3, . . . ,Pn

n T3]]→→β . . .→→β

θs[Pn
1 Ts, . . . ,Pn

n Ts] →→β θs[t ′1[P
n
1 Ts+1, . . . ,Pn

n Ts+1], . . . , t ′n[P
n
1 Ts+1, . . . ,Pn

n Ts+1]] →→β

. . .

In the reducing chain an infinite number of times the head β -redex is
convoluted. Therefore, the term τP′m′1 . . .m

′
k does not have a head normal form. �

Received 18.10.2016



186 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(2), p. 177–186.

R E F E R E N C E S

1. Nigiyan S.A. Functional Programming Languages. // Programming and Computer
Software, 1991, № 5, p. 77–86.

2. Nigiyan S.A. On Interpretation of Functional Programming Languages. // Programming
and Computer Software, 1993, v. 19, № 2, p. 71–78.

3. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU.
Physical and Mathematical Sciences, 2015, № 1, p. 52–60.

4. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland
Publishing Company, 1981.

5. Nigiyan S.A., Avetisyan S.A. Semantics of Untyped Functional Programs. // Program-
ming and Computer Software, 2002, v. 28, № 3, p. 119–126.

6. Hrachyan G.G. On Basic Semantics of Untyped Functional Programs. // Programming
and Computer Software, 2009, v. 35, № 3, p. 121–135.

7. Budaghyan L.E. Formalizing the Notion of δ -Reduction in Monotonic Models of Typed
λ -Calculus. // Algebra, Geometry & Their Applications, 2002, v. 1, p. 48–57.

8. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ -reduction and on
Translation of Typed λ -Terms into Untyped λ -Terms. // Proceedings of the YSU.
Physical and Mathematical Science, 2017, v. 51, № 1, p. 46–52.


