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NON-CLASSICAL PROBLEM OF BEND OF AN ORTHOTROPIC
ANNULAR PLATE OF VARIABLE THICKNESS WITH AN ELASTICALLY

CLAMPED SUPPORT
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A model of elastically clamped support for an inner edge of an axisym-
metric annular round bending plate is proposed. Values of parameters of the
support as well as relationship between them is determined. With the colloca-
tion method the problem of bending of a cylindrically orthotropic annual plate
of a variable thickness under a uniformly distributed load is solved taking into
account the transverse shear. It is assumed that the inner edge of the plate
is elastically fastened and the outer one is hingedly supported. Based on the
analysis of calculated values of immeasurable quantities qualitative conclusions
are drawn.
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Introduction. Extensive use of elastically clamped supports in building struc-
tures has led to the practical need for their studies. In the literature the following
works are dedicated to the theoretical and practical aspects of the model of elastically
clamped supports of thin-walled structural elements and their applications [1–15].

1. Problem Statement. Let us consider an elastically clamped support (Fig. 1)
in the right cylindrical coordinate system r,θ ,z.

The part of the ring plate’s inner edge is inserted in an elastically deformable
array. The length of the inserted part by the radius d is sufficiently small compared
to the radius R1 of the inner edge of the plate. Because of this, the inserted part
practically will move vertically and rotate around its center of mass as one whole

like an absolutely solid element. Therefore, the value of the derivative
dw
dr

of the
deflection within the inserted part is assumed to be constant. For simplicity, we will
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assume that the plate is deformed by axisymmetric bending. Then, on its internal
contour r = R1 only shear force Nr and bending moment Mr arise. The vanishing of
the static moment of the inserted part’s differential element with respect to its center
of mass is given by

a∫
0

(R1 −a+ x)xdx−
d−a∫
0

(R1 −a− x)xdx = 0, (1.1)

a denotes the distance of the inserted part’s center of mass from the inside edge of
the plate r = R1. After some calculations from (1.1) we obtain

a =
d (3R1 −2d)
3(2R1 −d)

. (1.2)

From (1.2) we see, that if d � R1, then a ≈ d
2
. This occurs, for example, with

elastically clamped support of the outer contour of the plate. Under the action of
the moment aNr of the shear force about the inserted part’s center of mass, and the
moment Mr of the plate’s edge, the plate’s median plane will rotate through a certain

angle in the support section r = R1. The tangent
dw
dr

of this angle depends on the

rotating moments. It is easy to notice that the positive sign of
dw
dr

in the adopted
right coordinate system corresponds to the negative moments. With this in mind, and

assuming that the value of
dw
dr

is directly proportional to the sum of the moments,
we can write:

dw
dr

∣∣∣∣
r=R1

= D(aNr −Mr) . (1.3)
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Fig. 1. 

The positive constant D is the reciprocal of the stiffness of the elastically
clamped support on rotation. It has dimension N−1 in the SI system. The inner
contour’s r = R1 deflection consists of two parts. One occurs by the rotation of the
inserted part around its center of mass, and the other one is because of the shear force
on the contour. Assuming that the second part is directly proportional to the shear
force, it is possible to write

w
∣∣∣
r=R1

=

(
a

dw
dr

+BNr

)
. (1.4)
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The constant B is the reciprocal of the stiffness of the elastically clamped support on
vertical offset. It has dimension m2N−1 in the SI system. Thus, (1.3) and (1.4) are
the conditions of the elastically clamped support of the plate’s internal edge when
it is axisymmetrically bent. They are essentially the same with the conditions of
elastically clamped beam supports, experiencing lateral bending deformation [1].

2. Obtaining the Parameters Connection. Let us define the parameters B
and D of the elastically clamped support and the relationship between them. We
use Fuss–Winkler hypothesis, according to which the deformed elastic array acts on
the inserted part of the plate with stresses that are directly proportional to the arised
displacements. As a result, a vertical force acts on the inserted part of the plate, which
balances the marginal shear force NrR1dθ . The moment of the forces (exerted by the
elastic solid) about the center of mass of the inserted part is to balance the sum of the
moments (aNr −Mr)R1dθ . These conditions are written as

2k1

d∫
0

(R1 −d + x)dx+h0k2 (R1 −d) =
R1

B
, (2.1)

2k1

 a∫
0

(R1 −a+ x)x2dx+
d−a∫
0

(R1 −a− x)x2dx

+h0k2 (R1 −d)(d −a)2 =
R1

D
,

(2.2)
here h0 is the constant thickness of the plate’s inserted part; k1 and k2 are coefficients
of proportionality of normal and tangential contact stresses respectively. They have
dimension N ·m−3 in the SI system. For the parameters of the elastically clamped
support of the plate’s inner edge, from (2.1) and (2.2) we obtain:

B =
R1

k1d (2R1 −d)+h0k2 (R1 −d)
, (2.3)

D =
6R1

k1d [d2 (4R1 +8a−3d)−6a(ad +2R1d −2aR1)]+6k2h0 (R1 −d)(d −a)2 .

(2.4)
In the case where the inserted part’s end does not contact the elastically deformable
array, the members of the expressions (2.3) and (2.4) with factor k2 will be omitted.
Then the parameters D and B of the elastically clamped support are in the following
relationship:

D =
6(2R1 −d)B

d2 (4R1 +8a−3d)−6a(ad +2R1d −2aR1)
. (2.5)

This exact relationship is used below in the solution of the particular task of
axisymmetric bending of the plate.

3. Problem Statement. Consider a cylindrically orthotropic circular ring plate
with inner and outer radii R1 and R2 respectively. The inner edge of the small plate
of length d and with constant thickness h0 is inserted into the elastically deformable
array, forming an elastically clamped support. The outer edge of the plate is hinged.
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The plate bears a uniformly distributed shear load of intensity q. The plate thickness
varies linearly with the following formula:

h = h0 +h1 (r−R1) , R2 ≥ r ≥ R1, (3.1)

here h0 and h1 are given constants.
4. Basic Notation and Obtaining the System of Resolving Equations.
We use the notation:

r = R2ρ, R1 = kR2, s =
h0

R2
, h = h0H, H = 1+ γ (ρ − k) ,

γ =
h1

s
, w = h0w̄, q = Brq̄, Bθ = mBr,

ϕ1 = Brϕ̄1, arBr = χ, d = h0d̄, a = h0ā, Nr = Brh0N̄r,

Mr = Brh2
0M̄r, Mθ = Brh2

0M̄θ , B =
B̄
Br

, D =
D̄

Brh2
0
,

(4.1)

here Br, Bθ , ar are well-known mechanical properties of the material [2]; χ is
determines the effect of transverse shear; ϕ1 is characterizes the change of the
transverse shear of the plate. With the notation (4.1) the expressions (1.2) and (2.5)
take the form:

ā =
d̄
(

3k−2sd̄
)

3
(

2k− sd̄
) , (4.2)

D̄ =
6
(

2k− sd̄
)

B̄

d̄2
(

4k+8sā−3sd̄
)
−6ā

(
āsd̄ +2kd̄ −2kā

) . (4.3)

In view of (4.1) for the expression of the shear forces and bending moments, taking
into account the effect of the shear [3], we obtain:

N̄r =
H
12

[
8ϕ̄1 − γs2H

(
s
d2w̄
dρ2 +

νθ

ρ
s
dw̄
dρ

−χ
dϕ̄1

dρ
− νθ

ρ
χϕ̄1

)]
, (4.4)

M̄r =− sH3

12ρ

(
sρ

d2w̄
dρ2 +νθ s

dw̄
dρ

−χρ
dϕ̄1

dρ
−νθ χϕ̄1

)
, (4.5)

M̄θ =−msH3

12ρ

(
s
dw̄
dρ

+ρsνr
d2w̄
dρ2 −χνrρ

dϕ̄1

dρ
−χϕ̄1

)
. (4.6)

Taking into account (4.1), the equilibrium differential equations of axisymmetric
bending of the plate [3] will take the following dimensionless forms:

γs4
νθ ρH2 d2w̄

dρ2 +ms4
γH2 dw̄

dρ
− sHρ

(
8ρ +χνθ γHs2) dϕ̄1

dρ
−

−s
(
8ρH +16γρ

2 +χmγs2H2)
ϕ̄1 = 12ρ

2q̄,
(4.7)

s3
ρ

2H2 d3w̄
dρ3 + s3

ρH (H +2γρ)
d2w̄
dρ2 + s3H (2νθ γρ −mH)

dw̄
dρ

−

−χs2H2
ρ

2 d2ϕ̄1

dρ2 −χs2Hρ (H +2γρ)
dϕ̄1

dρ
+

+
(
8ρ2 +χms2H2 −2χνθ Hγρs2

)
ϕ̄1 = 0.

(4.8)
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The system of Eqs. (4.7), (4.8) are fourth-order. Taking into account (4.1), the
boundary conditions are:

w̄ = ās
dw̄
dρ

+ B̄N̄r, s
dw̄
dρ

= D̄(āN̄r − M̄r) , ρ = k, (4.9)

w̄ = 0, ρs
d2w̄
dρ2 +νθ s

dw̄
dρ

−ρχ
dϕ̄1

dρ
−νθ χϕ̄1 = 0, ρ = 1. (4.10)

The problem will be solved by the collocation method [16]. Let

w̄ = a0 +
n

∑
i=1

aiρ
i, ϕ̄1 = b0 +

n

∑
i=1

biρ
i, (4.11)

here a0, ai, b0, bi are unknown constants. We will use the Eqs. (4.7), (4.8) and
boundary conditions (4.9) and (4.10) to determine their values. The interval k < ρ < 1
will be splitted into n parts. The number of splitting points is equal to (n−1). By
writing the system of Eqs. (4.7), (4.8) for these points, we obtain 2(n−1)
equations. Adding the four boundary conditions (4.9) and (4.10), we obtain the
system of algebraic equations for the 2(n+1) unknown constants. By increasing
n to such a value where the calculation process almost converges, we obtain the
solution of the problem. Dimensionless values of the calculation quantities of the
plate are defined with the formulas (4.1)–(4.6).

5. Considered Example. Since the calculation quantities of the plate are
directly proportional to the value of the intensity of the load, then for simplicity we
assume that q̄ = 1. In each case, we will multiply the solution by the real value q̄ and
will obtain the actual values of the calculation quantities.

Let: d̄ = 1, s = 0.05, γ = 1, νθ = 0.2, νr = 0.4, k = 0.2, m = 0.5,
χ = 0, 5, q̄ = 1(ā = 0.4762) , D̄ = 12.0822 B̄.

T a b l e 1

ρ

0.2 0.4 0.6 0.8 1

w̄
n = 8 3.6807 1575.1 2347.8 1564.2 0
n = 10 3.6921 1581.2 2353.0 1573.2 0

N̄r
n = 8 25.164 8.3190 1.7961 –2.1694 –9.2933
n = 10 23.033 7.8993 1.9267 –2.0538 –7.4308

M̄r
n = 8 –47.617 9.5831 21.713 16.548 0
n = 10 –49.201 9.4128 21.793 16.930 0

M̄θ

n = 8 –7.6126 -1.0992 4.6391 6.4051 4.4257
n = 10 –8.0776 –1.1080 4.6384 6.4936 4.4798

One can see from Tab. 1, that B̄ = 0.01, γ = 1, χ = 5 convergence at n = 10.
This is the case with other values of the problem parameters too.

For clarity, in the Figs. 2–5 are shown the graphs of the variation of dimen-
sionless calculation quantities for some values of the parameters of the problem.
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                         Fig. 2.                                                                              Fig. 3. 
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T a b l e 2

ρ

0.2 0.4 0.6 0.8 1

B̄
=

0.
00

1

γ
=

0

χ
=

0

w̄ 4.2464 2709.9 4893.8 3706.3 0
N̄r 24.878 8.1245 2.0734 –1.9434 –7.4468
M̄r –57.636 4.7252 18.744 14.696 0
M̄θ –11.608 -3.1379 3.2908 4.6081 1.9856

χ
=

5

w̄ 4.4999 2785.6 5064.9 3875.9 0
N̄r 23.347 8.3615 2.2383 –1.8208 –5.7149
M̄r –63.038 3.4599 18.527 15.032 0
M̄θ –11.015 –3.2234 3.2520 4.6881 2.0338

γ
=

1

χ
=

0

w̄ 3.1266 1351.1 1957.2 1257.9 0
N̄r 26.300 6.8154 1.1799 –2.6093 –16.123
M̄r –37.247 10.568 19.612 12.863 0
M̄θ –7.5071 –0.7141 4.2497 5.2998 3.6235

χ
=

5

w̄ 3.6921 1581.2 2353.0 1573.2 0
N̄r 23.033 7.8993 1.9267 –2.0538 –7.4308
M̄r –49.201 9.4128 21.793 16.930 0
M̄θ –8.0776 –1.1080 4.6384 6.4936 4.4798

B̄
=

0.
00

2

γ
=

0

χ
=

0

w̄ 8.4660 2730.8 4913.5 3717.5 0
N̄r 24.854 8.1169 2.0683 –1.9472 –7.4426
M̄r –57.419 4.8068 18.782 14.712 0
M̄θ –11.644 –3.1276 3.3031 4.6175 1.9911

χ
=

5

w̄ 8.9708 2807.7 5085.5 3887.4 0
N̄r 23.327 8.353 2.2326 –1.8251 –5.7162
M̄r –62.798 3.5478 18.567 15.047 0
M̄θ –11.054 –3.2122 3.2649 4.6977 2.0394

γ
=

1

χ
=

0

w̄ 6.2265 1364.1 1968.3 1263.9 0
N̄r 26.265 6.8084 1.1754 –2.6127 –16.094
M̄r –37.039 10.655 19.657 12.887 0
M̄θ –7.5225 –0.6998 4.2677 5.3189 3.6407

χ
=

5

w̄ 7.3492 1596.1 2365.2 1579.5 0
N̄r 23.004 7.8874 1.9188 –2.0597 –7.4277
M̄r –48.918 9.5170 21.837 16.944 0
M̄θ –8.0931 –1.0900 4.6579 6.5116 4.4968
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ρ

0.2 0.4 0.6 0.8 1
B̄
=

0.
01

γ
=

0

χ
=

0
w̄ 41.288 2892.7 5066.2 3804.4 0
N̄r 24.666 8.0573 2.0289 –1.9769 –7.4098
M̄r –55.729 5.4410 19.078 14.837 0
M̄θ –11.927 –3.0473 3.3987 4.6908 2.0339

χ
=

5

w̄ 43.723 2978.8 5245.4 3977.2 0
N̄r 23.173 8.2857 2.1879 –1.8587 –5.7260
M̄r –60.932 4.2293 18.876 15.167 0
M̄θ –11.354 –3.1258 3.3651 4.7717 2.0827

γ
=

1

χ
=

0

w̄ 30.109 1464.0 2054.1 1310.5 0
N̄r 25.997 6.7547 1.1402 –2.6392 –15.869
M̄r –35.435 11.323 20.003 13.077 0
M̄θ –7.6406 –0.5901 4.4057 5.4658 3.7734

χ
=

5

w̄ 35.419 1710.2 2458.2 1627.6 0
N̄r 22.783 7.7962 1.8582 –2.1052 –7.4036
M̄r –46.753 10.315 22.176 17.053 0
M̄θ –8.2119 –0.9521 4.8072 6.6494 4.6275

B̄
=

10

γ
=

0

χ
=

0

w̄ 1118.0 7662.9 9539.5 6343.4 0
N̄r 19.244 6.3319 0.8855 –2.8355 –6.4665
M̄r –6.9231 23.768 27.639 18.448 0
M̄θ –20.011 –0.6875 6.1852 6.8276 3.2837

χ
=

5

w̄ 1159.6 7934.4 9848.8 6557.9 0
N̄r 18.786 6.3742 0.9156 –2.8132 –6.0059
M̄r –7.9449 23.603 27.664 18.572 0
M̄θ –19.796 –0.6295 6.2379 6.8951 3.3281

γ
=

1

χ
=

0

w̄ 711.64 3813.9 4047.1 2389.3 0
N̄r 19.942 5.5362 0.3441 –3.2394 –10.821
M̄r 0.5937 26.319 27.779 17.339 0
M̄θ –10.189 1.9559 7.5846 8.8479 6.8434

χ
=

5

w̄ 759.31 4197.3 4470.1 2665.6 0
N̄r 18.138 5.8773 0.5826 –3.0626 –6.9042
M̄r –1.4076 27.034 29.276 19.322 0
M̄θ –10.604 2.0108 8.0059 9.6122 7.4475
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Conclusion. The data in Tab. 2 and graphs 2–5 lead to the following
conclusions:

1. With the increase of the parameter B̄, and hence also D̄, the stiffness of the
elastically clamped support reduces, resulting in an increased deflection of the plate.

2. Weakening elastically clamped support did not significantly affect
the qualitative behavior of the calculation quantities of the plate along radial
coordinate ρ.

3. A substantial weakening of elastically clamped support leads to substan-
tial increase of the deflection of clamped edge of the plate. The shear force Nr

and the bending moment Mr are decreased. The fixed edge of the plate tends to
the free edge.

4. As expected, when χ > 0, that is, taking into account the effect of transverse
shear, the deflections of the plate increases.

Received 21.11.2016
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