ON SOLVABILITY OF AN INFINITE NONLINEAR SYSTEM OF ALGEBRAIC EQUATIONS WITH TEOPLITZ-HANKEL MATRICES

Kh. A. KHACHATRYAN ${ }^{1,2}{ }^{*}$ M. H. AVETISYAN ${ }^{1,3 * *}$
${ }^{1}$ Institute of Mathematics of NAS of the Republic of Armenia
${ }^{2}$ Chair of Differential Equations YSU, Armenia
${ }^{3}$ Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

In the present paper a special class of infinite nonlinear system of algebraic equations with Teoplitz-Hankel matrices is studied. Above mentioned class of equations has direct applications in radiative transfer theory. Existence componentwise positive solutions for the system in space l_{1} are proved and some examples for mentioned equations, representing separate interest are given.

MSC2010: Primary 45G05; Secondary 47H30.
Keywords: positive solution, Teoplitz-Hankel type matrices, iteration, limit of solution.

Introduction and Statement of the Basic Results. The paper studies issues on solvability in space l_{1} infinite nonlinear algebraic system of equations

$$
\begin{equation*}
x_{n}=\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}\right), n=0,1,2 \ldots \tag{1}
\end{equation*}
$$

with respect to the unknown infinite vector $x=\left(x_{0}, x_{1}, \ldots x_{n}, \ldots\right)^{T}$ (T is the sign of transposition).

The Teoplitz $A \equiv\left(a_{n-j}\right)_{n, j=0}^{\infty}$ and the Hankel $B \equiv\left(a_{n+j}\right)_{n, j=0}^{\infty}$ matrices satisfy the conditions

$$
\begin{gather*}
a_{-j}=a_{j}, \quad \forall j \in \mathbb{N} \cup\{0\}, a_{n}>0, \forall n \in \mathbb{Z}, \tag{2}\\
\sum_{i=-\infty}^{\infty} a_{i}=1, \quad \sum_{j=0}^{\infty} j^{2} a_{j}<+\infty \tag{3}\\
a_{n+1}<a_{n}, \quad \forall n \in \mathbb{N} \cup\{0\} . \tag{4}
\end{gather*}
$$

The system (1) arises in discrete problems of radiative transfer theory (see [1,2]). Such type of system also arises in kinetic theory of gases and p-adic string theory (see [3-5]).

[^0]The papers [6-9] studied system of equations (1] with the conditions (3), (4) and $v(A) \equiv \sum_{j=-\infty}^{\infty} j a_{j}<0$ for the different restrictions on $\left\{h_{j}(u)\right\}_{j=0}^{\infty}$ and $\left\{h_{j}^{*}(u)\right\}_{j=0}^{\infty}$.

In the present paper we will construct componentwise positive l_{1} solution for nonlinear system (1) in the symmetric case (see condition (2)) .

The basic result of present note is the following:
Theorem1. (Basic). Let conditions (2)-(4) are satisfied and there exist numbers $\alpha \in(0,1 / 2]$ and $\eta \in(0,1)$ such that:
a) for each fixed $j \in \mathbb{N} \cup\{0\}$ the functions $h_{j}(u)$ and $h_{j}^{*}(u)$ are increasing on the interval $\left[P_{j}(\eta), 1\right]$,

$$
\begin{equation*}
P_{j}(\eta) \equiv \eta \sum_{m=j+1}^{\infty} a_{m}, \quad j \in \mathbb{N} \cup\{0\} ; \tag{5}
\end{equation*}
$$

b) $h_{j}, h_{j}^{*} \in C\left[P_{j}(\eta), 1\right], \quad j=0,1,2, \ldots$;
c) the following inequalities are satisfied

$$
\begin{gather*}
0 \leq h_{j}(u) \leq 1-(1-u)^{\alpha}, \quad u \in\left[P_{j}(\eta), 1\right], \quad j=0,1,2, \ldots ; \tag{6}\\
h_{j}^{*}\left(P_{j}(\eta)\right) \geq \eta, \quad h_{j}^{*}(1) \leq 1, \quad j=0,1,2, \ldots \tag{7}
\end{gather*}
$$

Then system (1) has componentwise positive solution in space l_{1}, i.e there exists $x=\left(x_{0}, x_{1}, x_{2}, \ldots x_{n}, \ldots\right)^{T}$, satisfying (1). Moreover $x_{j}>0, \forall j \in \mathbb{N} \cup\{0\}$, and $\sum_{j=0}^{\infty} x_{j}<+\infty$.

Auxiliary Facts. Together with equation (1) we consider the following nonlinear auxiliary system:

$$
\begin{equation*}
s_{n}=\sum_{j=0}^{\infty}\left(a_{n-j}-a_{n+j}\right) s_{j}^{\alpha}, \quad n \in \mathbb{N} \cup\{0\}, \tag{8}
\end{equation*}
$$

with respect to the unknown infinite vector $S=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)^{T}$, where the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ satisfies conditions (2)-(4). We consider the following iteration:

$$
\begin{align*}
& s_{n}^{(p+1)}=\sum_{j=0}^{\infty}\left(a_{n-j}-a_{n+j}\right)\left(s_{j}^{(p)}\right)^{\alpha}, \tag{9}\\
& s_{n}^{(0)} \equiv 1, \quad n=0,1,2 \ldots, \quad p=0,1,2, \ldots
\end{align*}
$$

Using (2)-(4), one can easily verify by induction that

$$
\begin{gather*}
s_{n}^{(p)} \geq 0, \quad n=0,1,2, \ldots, \quad p=0,1,2, \ldots, \tag{10}\\
s_{n}^{(p)} \downarrow \text { in } p, \quad n=0,1,2, \ldots, \tag{11}
\end{gather*}
$$

i.e.

$$
\begin{equation*}
\forall n \in \mathbb{N} \cup\{0\}, \quad 0 \leq s_{n}^{(p+1)} \leq s_{n}^{(p)}, \quad p=0,1,2, \ldots \tag{12}
\end{equation*}
$$

Below we prove by induction that

$$
\begin{equation*}
\overline{\mathbf{1}}-S^{(p)} \in l_{1}, \quad p=0,1,2, \ldots, \tag{13}
\end{equation*}
$$

where $\overline{\mathbf{1}}=(1,1, \ldots, 1, \ldots)^{T}, S^{(p)}=\left(s_{0}^{(p)}, s_{1}^{(p)}, \ldots, s_{n}^{(p)}, \ldots\right)^{T}$. For $p=0$, inclusion 13) immediately follows from $\overline{\mathbf{1}}-S^{(0)}=(0,0, \ldots, 0, \ldots)^{T}$. Let $\sqrt{13}$) takes place for some natural p. Then, taking into account (2)-(4) and (10)-(11), from (9) we obtain

$$
\begin{gathered}
0 \leq 1-s_{n}^{(p+1)}=\sum_{j=0}^{\infty} a_{n-j}+\sum_{j=1}^{\infty} a_{n+j}-\sum_{j=0}^{\infty} a_{n-j}\left(s_{j}^{(p)}\right)^{\alpha}+\sum_{j=0}^{\infty} a_{n+j}\left(s_{j}^{(p)}\right)^{\alpha} \leq \\
\sum_{j=0}^{\infty} a_{n-j}\left(1-\left(s_{j}^{(p)}\right)^{\alpha}\right)+\sum_{m=n+1}^{\infty} a_{m}+\sum_{m=n}^{\infty} a_{m} \leq \sum_{j=0}^{\infty} a_{n-j}\left(1-s_{j}^{(p)}\right)+2 \sum_{m=n+1}^{\infty} a_{m}+a_{n} .
\end{gathered}
$$

According to induction assumption (2), (3), from the obtained estimation we get

$$
\sum_{n=0}^{\infty}\left(1-s_{n}^{(p+1)}\right) \leq \sum_{j=0}^{\infty}\left(1-s_{j}^{(p)}\right)+2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}<+\infty .
$$

Therefore, $\overline{\mathbf{1}}-S^{(p+1)} \in l_{1}$. Thus the inclusion (13) is proved.
Now consider the following auxiliary infinite linear homogeneous algebraic system of equations:

$$
\begin{equation*}
\tau_{n}=\frac{2}{1+a_{0}} \sum_{j=n}^{\infty}\left(a_{j-n}-a_{j+n}\right) \tau_{j}, \quad n=0,1,2, \ldots \tag{14}
\end{equation*}
$$

with respect to the unknown infinite vector $\tau=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{n}, \ldots\right)^{T}$, where sequence $\left\{a_{i}\right\}_{i=-\infty}^{\infty}$ satisfies conditions (2)-(4). We prove below that system (14) besides of trivial solution $(0,0, \ldots, 0, \ldots)^{T}$, provides also a componentwise non-negative nontrivial solution in the space of bounded sequences. First we consider following nonhomogeneous system:

$$
\begin{equation*}
q_{n}=\rho_{n}+\frac{2}{1+a_{0}} \sum_{j=n}^{\infty}\left(a_{j-n}-a_{j+n}\right) q_{j}, \quad n=0,1,2, \ldots \tag{15}
\end{equation*}
$$

with respect to the infinite vector $q=\left(q_{0}, q_{1}, \ldots, q_{n}, \ldots\right)^{T}$, where

$$
\begin{equation*}
\rho_{n} \equiv \frac{2}{1+a_{0}} \sum_{m=2 n}^{\infty} a_{m}, \quad n=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Direct verification shows, that the vector $\overline{\mathbf{1}}=(1,1, \ldots, 1, \ldots)^{T}$ satisfies (15). Now we verify that system (15), besides of the trivial solution $\overline{1}$ also has a positive solution in space l_{1}.

We consider the following "majoranting" linear system

$$
\begin{equation*}
\alpha_{n}=\rho_{n}+\frac{2}{1+a_{0}} \sum_{j=n}^{\infty} a_{j-n} \alpha_{j}, \quad n=0,1,2, \ldots, \tag{17}
\end{equation*}
$$

with respect to the vector $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right)^{T}$. From (2)-(4) it follows that

$$
\begin{gather*}
\frac{2}{1+a_{0}} \sum_{j=0}^{\infty} a_{j}=1 \tag{18}\\
v(\rho) \equiv \sum_{n=0}^{\infty} n \rho_{n} \leq \frac{2}{1+a_{0}} \sum_{n=0}^{\infty} n \sum_{m=n}^{\infty} a_{m}=\frac{2}{1+a_{0}} \sum_{m=0}^{\infty} a_{m} \sum_{n=0}^{m} n= \tag{19}\\
=\frac{1}{1+a_{0}} \sum_{m=0}^{\infty} m(m+1) a_{m}<+\infty, \quad \rho=\left(\rho_{0}, \rho_{1}, \ldots, \rho_{n}, \ldots\right)^{T} .
\end{gather*}
$$

Therefore, from results of work [10] it follows that system (17) has a positive solution in l_{1}. We consider the following iteration:

$$
\begin{align*}
& q_{n}^{(m+1)}=\rho_{n}+\frac{2}{1+a_{0}} \sum_{j=n}^{\infty}\left(a_{j-n}-a_{j+n}\right) q_{j}^{(m)}, \tag{20}\\
& q_{n}^{(0)}=\rho_{n}, \quad m=0,1,2, \ldots, \quad n=0,1,2, \ldots
\end{align*}
$$

By induction in m it can be proved that for each $n \in \mathbb{N} \cup\{0\}$ the following relations hold:

$$
\begin{gather*}
q_{n}^{(m+1)} \geq q_{n}^{(m)}, \quad m=0,1,2, \ldots \tag{21}\\
q_{n}^{(m)} \leq \alpha_{n}, \quad m=0,1,2, \ldots \tag{22}\\
q_{n}^{(m)} \leq 1, \quad m=0,1,2, \ldots \tag{23}
\end{gather*}
$$

From 21-23, taking into account Weierstrass theorem, it follows that the sequence of vectors $q^{(m)}=\left(q_{0}^{(m)}, q_{1}^{(m)}, \ldots, q_{n}^{(m)}, \ldots\right)^{T}$ has limit: $\lim _{m \rightarrow \infty} q^{(m)}=q \equiv\left(q_{0}, q_{1}, \ldots, q_{n}, . .\right)^{T}$, and moreover

$$
\begin{equation*}
\rho_{n} \leq q_{n} \leq \alpha_{n}, \quad q_{n} \leq 1, \quad n=0,1,2 \ldots \tag{24}
\end{equation*}
$$

From (23), (2) and (3) it follows that the limit vector satisfies system (15). Thus system (15) besides of the trivial solution $\overline{\mathbf{1}}=(1,1, \ldots, 1, \ldots)^{T}$ also has a componentwise positive solution $q=\left(q_{0}, q_{1}, \ldots, q_{n}, \ldots\right)^{T} \in l_{1}$, moreover the components of the vector q satisfy inequalities (24). Direct checking shows that the vector $\tau=\overline{\mathbf{1}}-q$ satisfies the system (14). From (24) it follows that

$$
\begin{equation*}
\tau_{n} \geq 0, \quad \tau_{n} \not \equiv 0, \quad \tau_{n} \leq 1, \quad n=0,1,2, \ldots \tag{25}
\end{equation*}
$$

since $q \in l_{1}$. Fixing this solution, we consider the following iteration:

$$
\begin{equation*}
\tau_{n}^{(m+1)}=\frac{2}{1+a_{0}} \sum_{j=n}^{\infty}\left(a_{j-n}-a_{j+n}\right) \tau_{j}^{(m)}, \tau_{n}^{(0)}=1, m=0,1,2, \ldots, n=0,1,2, \ldots \tag{26}
\end{equation*}
$$

By induction by m we can check the accuracy of the following statements:

$$
\begin{equation*}
\tau_{n}^{(m+1)} \leq \tau_{n}^{(m)}, \quad \tau_{n}^{(m)} \geq \tau_{n}, \quad n=0,1,2, \ldots, \quad m=0,1,2, \ldots \tag{27}
\end{equation*}
$$

Rewriting iteration (26) in the form
$\tau_{n}^{(m+1)}=\frac{2}{1+a_{0}} \sum_{i=0}^{\infty} a_{i} \tau_{n+i}^{(m)}-\frac{2}{1+a_{0}} \sum_{j=n}^{\infty} a_{j+n} \tau_{j}^{(m)}, \tau_{n}^{(0)}=1, m=0,1,2, \ldots, n=0,1,2, \ldots$ and using (2) and (4), it can be verified that for each $m \in \mathbb{N} \cup\{0\}$ we have:

$$
\begin{equation*}
\tau_{n+1}^{(m)} \geq \tau_{n}^{(m)}, \quad n=0,1,2, \ldots \tag{28}
\end{equation*}
$$

From (27) and (28) it follows that sequence of vector $\tau^{(m)}=\left(\tau_{0}^{(m)}, \tau_{1}^{(m)}, \ldots, \tau_{n}^{(m)}, \ldots\right)^{T}$, $m=0,1,2, \ldots$, has a limit as $m \rightarrow \infty$ that is $\lim _{m \rightarrow \infty} \tau^{(m)}=\tau_{n}^{*}, n=0,1,2, \ldots$ In addition the limit vector $\tau^{*}=\left(\tau_{0}^{*}, \tau_{1}^{*}, \ldots, \tau_{n}^{*}, \ldots\right)^{T}$ satisfies system (14) and satisfies the following properties:

$$
\begin{gather*}
\tau_{n} \leq \tau_{n}^{*} \leq 1, \quad n=0,1,2, \ldots \tag{29}\\
\tau_{n+1}^{*} \geq \tau_{n}^{*}, \quad n=0,1,2, \ldots \tag{30}
\end{gather*}
$$

Since $\tau_{n} \geq 0, \tau_{n} \not \equiv 0$, we have $\tau_{n}^{*} \geq 0, \tau_{n}^{*} \not \equiv 0$. Therefore, there exists number $n_{0} \in \mathbb{N}$ such that $\tau_{n_{0}}^{*}>0$. From (30) it follows for $n \geq n_{0}$ that

$$
\begin{equation*}
\tau_{n}^{*} \geq \tau_{n_{0}}^{*}>0 \tag{31}
\end{equation*}
$$

Return to the sequence of vectors $\left\{S^{(p)}\right\}_{p=0}^{\infty}$. Using the sequence approximation method, we prove that

$$
\begin{equation*}
s_{n}^{(p)} \geq \frac{\tau_{n}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}}, \quad n=0,1,2, \ldots, \quad p=0,1,2, \ldots \tag{32}
\end{equation*}
$$

In the case $p=0$ the inequality (32) follows from the following chain of inequalities:

$$
\frac{\tau_{n}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \leq\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \leq 1=s_{n}^{(0)}
$$

Let inequality (32) holds for some natural p. Then from (9), taking into account (2)-4) and (14), we get

$$
\begin{aligned}
& s_{n}^{(p+1)} \geq \sum_{j=0}^{\infty}\left(a_{n-j}-a_{n+j}\right)\left(\frac{\tau_{j}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}\right)^{\alpha}\left(\frac{1+a_{0}}{2}\right)^{\frac{\alpha}{1-\alpha}} \geq \\
& \geq\left(\frac{1+a_{0}}{2}\right)^{\frac{\alpha}{1-\alpha}}\left(\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}\right)^{-\alpha} \sum_{j=n}^{\infty}\left(a_{n-j}-a_{n+j}\right)\left(\tau_{j}^{*}\right)^{\alpha} \geq \\
& \quad \geq\left(\frac{1+a_{0}}{2}\right)^{\frac{\alpha}{1-\alpha}}\left(\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}\right)^{-1} \sum_{j=n}^{\infty}\left(a_{n-j}-a_{n+j}\right) \tau_{j}^{*}= \\
& =\left(\frac{1+a_{0}}{2}\right)^{\frac{\alpha}{1-\alpha}} \cdot \frac{1+a_{0}}{2} \cdot \frac{\tau_{n}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}=\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \frac{\tau_{n}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}} .
\end{aligned}
$$

From (11) and (32) it follows that sequence of vectors $S^{(p)}=\left(s_{0}^{(p)}, s_{1}^{(p)}, \ldots, s_{n}^{(p)}, \ldots\right)^{T}$, $p=0,1,2, \ldots$, has a limit as $p \rightarrow \infty$, i.e. $\lim _{p \rightarrow \infty} S^{(p)}=S=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)^{T}$, then the limit vector S satisfies (8) and the inequality

$$
\begin{equation*}
\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \frac{\tau_{n}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}} \leq s_{n} \leq 1, \quad n \in \mathbb{N} \cup\{0\} \tag{33}
\end{equation*}
$$

From (33) and (31) for $n \geq n_{0}$ it also follows that

$$
\begin{equation*}
s_{n} \geq\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \frac{\tau_{n_{0}}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}>0 \tag{34}
\end{equation*}
$$

Thus proves the following:

Theorem 2. Let the sequence $\left\{a_{i}\right\}_{i=-\infty}^{\infty}$ satisfy condition (2)-(4), and $\alpha \in\left(0, \frac{1}{2}\right]$. Then the system (8) has a componentwise non-negative solution $S=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)^{T}$ in space of bounded sequences. Moreover each component of the vector S satisfies inequalities (33) and (34).

In the following theorem we will additionally prove that

$$
\begin{equation*}
\overline{\mathbf{1}}-S \in l_{1} . \tag{35}
\end{equation*}
$$

Theorem 3. Let the conditions of the Theorem 2 are satisfied. Then the constructed solution S satisfies additional property (35).

Proof. First note that from (2)-(4) follows that

$$
\begin{equation*}
\gamma \equiv \sum_{j=-\infty}^{n_{0}} a_{j}<1 . \tag{36}
\end{equation*}
$$

Using inclusion (13) below, by induction we prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-s_{n}^{(p)}\right) \leq\left(2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}\right)(1-\varepsilon)^{-1}, \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon \equiv \max (\gamma, \beta), \quad \beta \equiv\left(1+\sqrt{\left(\frac{1+a_{0}}{2}\right)^{\frac{1}{1-\alpha}} \frac{\tau_{n_{0}+1}^{*}}{\sup _{n \in \mathbb{N} \cup\{0\}} \tau_{n}^{*}}}\right)^{-1} . \tag{38}
\end{equation*}
$$

In the case $p=0$ the inequality (37) obviously follows from (9). Let (37) holds for some $p \in \mathbb{N}$. We prove (37) in the case $p+1$. Taking into account (2)-(4), (34), (36) from (9), we obtain:

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(1-s_{n}^{(p+1)}\right) \leq \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} a_{n-j}\left(1-\left(s_{j}^{(p)}\right)^{\alpha}\right)+2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}= \\
=2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\sum_{j=0}^{\infty}\left(1-\left(s_{j}^{(p)}\right)^{\alpha}\right) \sum_{n=0}^{\infty} a_{n-j} \leq \\
\leq 2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\sum_{j=0}^{\infty}\left(1-\sqrt{s_{j}^{(p)}}\right) \sum_{m=-\infty}^{j} a_{m}= \\
=2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\sum_{j=0}^{n_{0}}\left(1-\sqrt{s_{j}^{(p)}}\right) \sum_{m=-\infty}^{j} a_{m}+ \\
+\sum_{j=n_{0}+1}^{\infty}\left(1-\sqrt{s_{j}^{(p)}}\right) \sum_{m=-\infty}^{j} a_{m} \leq 2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\gamma \sum_{j=0}^{n_{0}}\left(1-\sqrt{s_{j}^{(p)}}\right)+ \\
+\sum_{j=n_{0}+1}^{\infty} \frac{1-s_{j}^{(p)}}{1+\sqrt{s_{j}^{(p)}} \leq 2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\gamma \sum_{j=0}^{n_{0}}\left(1-s_{j}^{(p)}\right)+\beta \sum_{j=n_{0}+1}^{\infty}\left(1-s_{j}^{(p)}\right) \leq}
\end{gathered}
$$

$$
\begin{gathered}
\leq 2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\varepsilon\left(\sum_{j=0}^{n_{0}}\left(1-s_{j}^{(p)}\right)+\sum_{j=n_{0}+1}^{\infty}\left(1-s_{j}^{(p)}\right)\right) \leq \\
\leq 2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}+\varepsilon \sum_{j=0}^{\infty}\left(1-s_{j}^{(p+1)}\right) \Rightarrow \\
\Rightarrow \sum_{j=0}^{\infty}\left(1-s_{j}^{(p+1)}\right) \leq\left(2 \sum_{m=1}^{\infty} m a_{m}+\sum_{n=0}^{\infty} a_{n}\right)(1-\varepsilon)^{-1}
\end{gathered}
$$

Thus inequality (37) is proved. Tending p to infinity in (37) completes the Proof of Theorem.
$\boldsymbol{R e m a r k}$. It we note that the Theorems 2 and 3 are the discrete analogues of the results obtained earlier in [11].

Proof of the Basic Results. Examples of Functions $\left\{h_{j}\right\}_{j=0}^{\infty}$ and $\left\{h_{j}^{*}\right\}_{j=1}^{\infty}$ • Consider the following iteration for the basic system (1)

$$
\begin{align*}
& x_{n}^{(p+1)}=\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}^{(p)}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}^{(p)}\right), \tag{39}\\
& x_{n}^{(0)}=1-s_{n}, \quad p=0,1,2, \ldots, \quad n=0,1,2, \ldots,
\end{align*}
$$

where $S=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)^{T}$ are the solution of the system (8) and satisfies properties (33)-(35). By induction we will prove that for each $n \in \mathbb{N} \cup\{0\}$:

$$
\begin{gather*}
x_{n}^{(p)} \downarrow \text { in } p \tag{40}\\
x_{n}^{(p)} \geq P_{n}(\eta), \quad p=0,1,2, \ldots \tag{41}
\end{gather*}
$$

where $P_{n}(\eta)$ is given by formula (5). First we verify that $x_{n}^{(1)} \leq x_{n}^{(0)}$ and $x_{n}^{(0)} \geq P_{n}(\eta)$, $n=0,1,2, \ldots$ Indeed, from (8), taking into account (2)-(3), we have

$$
\begin{aligned}
x_{n}^{(0)}=1 & -s_{n}=\sum_{j=0}^{\infty} a_{n-j}\left(1-s_{j}^{\alpha}\right)+\sum_{j=n+1}^{\infty} a_{j}+\sum_{j=0}^{\infty} a_{n+j} s_{j}^{\alpha} \geq \\
& \geq \sum_{j=n+1}^{\infty} a_{j} \geq \eta \sum_{j=n+1}^{\infty} a_{j}=P_{n}(\eta), x_{n}^{(0)} \leq 1
\end{aligned}
$$

Using conditions (6), (7), taking into account (2)-(4), from (39) we get

$$
\begin{gathered}
x_{n}^{(1)} \leq \sum_{j=0}^{\infty} a_{n-j}\left(1-\left(1-x_{j}^{(0)}\right)^{\alpha}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}^{(0)}\right) \leq \\
\leq \sum_{j=0}^{\infty} a_{n-j}\left(1-s_{j}^{\alpha}\right)+\sum_{j=1}^{\infty} a_{n+j}=1-\sum_{j=0}^{\infty} a_{n-j} s_{j}^{\alpha}+\sum_{j=0}^{\infty} a_{n+j} s_{j}^{\alpha}-\sum_{j=0}^{\infty} a_{n+j} s_{j}^{\alpha}= \\
=1-\sum_{j=0}^{\infty}\left(a_{n-j}-a_{n+j}\right) s_{j}^{\alpha}-\sum_{j=0}^{\infty} a_{n+j} s_{j}^{\alpha} \leq 1-s_{n}
\end{gathered}
$$

Assuming that $x_{n}^{(p)} \leq x_{n}^{(p-1)}$ and $x_{n}^{(p)} \geq P_{n}(\eta), n=0,1,2, \ldots$, for some $p \in \mathbb{N}$ and taking into account the monotonicity $h_{j}(u), j=0,1,2, \ldots, h_{j}^{*}(u), j=1,2, \ldots$, on u, from (39) we obtain

$$
x_{n}^{(p+1)} \leq \sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}^{(p-1)}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}^{(p-1)}\right)=x_{n}^{(p)}
$$

$$
\begin{aligned}
x_{n}^{(p+1)} & \geq \sum_{j=0}^{\infty} a_{n-j} h_{j}\left(P_{j}(\eta)\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(P_{j}(\eta)\right) \geq \\
& \geq \sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(P_{j}(\eta)\right) \geq \eta \sum_{j=1}^{\infty} a_{n+j}=P_{n}(\eta) .
\end{aligned}
$$

From (40) and (41) we obtain that the sequence of vectors $x^{(p)}=\left(x_{0}^{(p)}, x_{1}^{(p)}, \ldots, x_{n}^{(p)}, \ldots\right)^{T}, p=0,1,2, \ldots$, has a limit as $p \rightarrow \infty$:

$$
\lim _{p \rightarrow \infty} x^{(p)}=x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)^{T} .
$$

From (40) and (41) it also follows that

$$
\begin{equation*}
P_{n}(\eta) \leq x_{n} \leq 1-s_{n}, \quad n=0,1,2, \ldots \tag{42}
\end{equation*}
$$

Since $\overline{\mathbf{1}}-S \in l_{1}$, then from (42) we obtain that $x \in l_{1}$. Now we verify that vector x satisfies system (1). First we note that the sum of series

$$
\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}\right)+\sum_{j=0}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}\right)
$$

is bounded uniformly in n. Using (42), (6), (7) and (2)-(4), we get

$$
\begin{gathered}
\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}\right) \leq \sum_{j=0}^{\infty} a_{n-j}\left(1-\left(1-x_{j}\right)^{\alpha}\right)+ \\
+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}(1) \leq \sum_{j=0}^{\infty} a_{n-j}+\sum_{j=1}^{\infty} a_{n+j}=1<+\infty
\end{gathered}
$$

On the other hand, $h_{j}, h_{j}^{*} \in C\left[P_{j}(\eta), 1\right], j=0,1, \ldots$ Hence, we can pass to the limit in the summation sign as $p \rightarrow \infty$. Indeed in (39) passing to the limit, taking into account above mentioned Remark, we obtain

$$
\begin{gathered}
x_{n}=\lim _{p \rightarrow \infty} x_{n}^{(p+1)}=\lim _{p \rightarrow \infty}\left(\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}^{(p)}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}^{(p)}\right)\right)= \\
=\sum_{j=0}^{\infty} a_{n-j} \lim _{p \rightarrow \infty}\left(h_{j}\left(x_{j}^{(p)}\right)\right)+\sum_{j=1}^{\infty} a_{n+j} \lim _{p \rightarrow \infty}\left(h_{j}^{*}\left(x_{j}^{(p)}\right)\right)= \\
=\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(\lim _{p \rightarrow \infty} x_{j}^{(p)}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(\lim _{p \rightarrow \infty} x_{j}^{(p)}\right)=\sum_{j=0}^{\infty} a_{n-j} h_{j}\left(x_{j}\right)+\sum_{j=1}^{\infty} a_{n+j} h_{j}^{*}\left(x_{j}\right) .
\end{gathered}
$$

Thus the Theorem 1 is proved.
At the end of the work we list some examples of functions $\left\{h_{j}\right\}_{j=0}^{\infty},\left\{h_{j}^{*}\right\}_{j=1}^{\infty}$ satisfying all conditions of Basic Theorem 1:

1. $h_{j}(u)=\left(1-(1-u)^{\alpha}\right) c_{j}$, where $\alpha \in\left(0, \frac{1}{2}\right], 0<c_{j} \leq 1, j=0,1,2, \ldots$, $u \in\left[P_{j}(\eta), 1\right]$,

$$
h_{j}^{*}(u)=\frac{u}{u+P_{j}(1-\eta)}, \eta \in(0,1), u \in\left[P_{j}(\eta), 1\right], j=1,2,3, \ldots
$$

2. $h_{j}(u)=\ln \left(2-(1-u)^{\alpha}\right) d_{j}(u), \alpha \in\left(0, \frac{1}{2}\right], 0<d_{j}(u) \leq 1, u \in\left[P_{j}(\eta), 1\right]$, $d_{j}(u) \uparrow$ in u on $\left[P_{j}(\eta), 1\right], d_{j} \in C\left[P_{j}(\eta), 1\right], j=0,1,2, \ldots$, $h_{j}^{*}(u)=\frac{u}{u+P_{j}(1-\eta)}+\frac{P_{j}(1-\eta)}{1+P_{j}(1-\eta)} u^{r}, r>1, u \in\left[P_{j}(\eta), 1\right], j=1,2,3, \ldots$;
3. $h_{j}(u)=\frac{1-(1-u)^{\alpha}+\ln \left(2-(1-u)^{\alpha}\right)}{2} d_{j}(u), u \in\left[P_{j}(\eta), 1\right], j=0,1,2, \ldots$,
$h_{j}^{*}(u)=\left(\left(\frac{u}{1+P_{j}(1-\eta)}\right)^{2}+\frac{u^{r+1} P_{j}(1-\eta)}{\left(u+P_{j}(1-\eta)\right)\left(1+P_{j}(1-\eta)\right)}\right)^{\frac{1}{2}}, \quad r>1$, $u \in\left[P_{j}(\eta), 1\right], j=1,2,3, \ldots$
The examples of sequences $\left\{d_{j}(u)\right\}_{j=0}^{\infty}$ can serve the following functions:
4. $d_{j}(u)=1-\delta_{j} e^{-u}$;
5. $d_{j}(u)=\frac{\delta_{j} u}{1+u}, \quad 0<\delta_{j} \leq 1, \quad j=0,1,2, \ldots$

Discuss same the details of Example 2.
Since $d_{j}(u) \uparrow$ in u on $\left[P_{j}(\eta), 1\right], \quad j=0,1,2, \ldots$, and
$\frac{d}{d u}\left(\ln \left(2-(1-u)^{\alpha}\right)\right)=\frac{1}{2-(1-u)^{\alpha}} \frac{\alpha}{(1-u)^{1-\alpha}}>0, j=0,1,2, \ldots$,

$$
u \in\left[P_{j}(\eta), 1\right], h_{j}(u) \geq d_{j}(u) \ln 1=0
$$

$\frac{d h_{j}^{*}(u)}{d u}=\frac{P_{j}(1-\eta)}{\left(u+P_{j}(1-\eta)\right)^{2}}+\frac{r P_{j}(1-\eta)}{1+P_{j}(1-\eta)} u^{r-1}>0, \quad j=1,2, \ldots, u \in\left[P_{j}(\eta), 1\right]$,
condition a) of Theorem 1 is satisfied. The condition b) is also satisfied, since the given functions are continuous on $[0,1] \supset\left[P_{j}(\eta), 1\right], \forall j=0,1,2, \ldots$ We cheek the condition c). Taking into account $\ln (1+x) \leq x, x \geq 0$, we have

$$
\begin{gathered}
h_{j}(u)=\ln \left(1+1-(1-u)^{\alpha}\right) d_{j}(u) \leq \ln \left(1+1-(1-u)^{\alpha}\right) \leq 1-(1-u)^{\alpha}, \\
h_{j}(u) \geq d_{j}(u) \ln 1=0, \\
h_{j}^{*}\left(P_{j}(\eta)\right)=\frac{P_{j}(\eta)}{P_{j}(\eta)+P_{j}(1-\eta)}+\frac{P_{j}(1-\eta)}{1+P_{j}(1-\eta)} P_{j}^{r}(\eta) \geq \\
\geq \frac{\eta \sum_{k=j+1}^{\infty} a_{k}}{\eta \sum_{k=j+1}^{\infty} a_{k}+(1-\eta) \sum_{k=j+1}^{\infty} a_{k}}=\eta \\
h_{j}^{*}(1)=\frac{1}{1+P_{j}(1-\eta)}+\frac{P_{j}(1-\eta)}{1+P_{j}(1-\eta)}=1 .
\end{gathered}
$$

This work was supported by the SCS of MES of RA in the frame of project № $16 Y R$-1A002.

REFERENCES

1. Engibaryan N.B. A Nonlinear Problem of Radiative Transfer. // Astrophysics, 1965, v. 1, № 3, p. 158-159 (in Russian).
2. Engibaryan N.B. A Discrete Model for Nonlinear Problems of Radiation Transfer: Principle of Invariance and Factorization. // Mathematical Models and Comp. Simulations, 2015, v. 27, № 5, p. 127-136.
3. Khachatryan A.Kh., Khachatryan Kh. A. Qualitative Difference between Solutions for a Model of the Boltzmann Equation in the Linear and Nonlinear Cases. // Theoret. and Math. Phys., 2012, v. 172, № 3, p. 1315-1320 (in Russian).
4. Vladimirov V.S., Volovich Ya.I. Nonlinear Dynamics Equation in p-Adic String Theory. // Theoret. and Math. Phys., 2004, v. 138, № 3, p. 297-309.
5. Vladimirov V.S. The Equation of the p-Adic Open String for the Scalar Tachyon Field. // Izv. Mathematics, 2005, v. 69, № 3, p. 487-512.
6. Khachatryan Kh.A., Broyan M.F. One-Parameter Family of Positive Solutions for a Class of Nonlinear Infinite Algebraic System with Teoplitz-Hankel Type Matrices. // Journal of Contemporary Mathematical Analysis, 2013, v. 48, № 5, p. 189-200.
7. Khachatryan A.Kh., Kroyan A.K. On the Positive Solvability of an Infinite System of Nonlinear Algebraic Equations in l_{1} with Teoplitz Matrices. // Vestnik RAU. Phys. Math. Science, 2015, № 1, p. 16-25 (in Russian).
8. Azizyan H.H., Khachatryan Kh.A. One-Parametric Family of Positive Solutions for a Class of Nonlinear Discrete Hammerstein-Volterra Equations. // Ufa Mathematical Journal, 2016, v. 8, № 1, p. 13-19.
9. Petrosyan H.S., Kostanyan M.G. On Solvability of an Class of Nonlinear Infinity Systems of Algebraic Equations with the Teoplitz Matrices. // Mathematics in Higher School, 2014, v. 10, № 1, p. 35-40 (in Russian).
10. Arabadzyan L.G. On Discrete Wiener-Hopf Equations in the Conservative Case. // Math. Analysis and Applications (Armenian State Ped. University after Kh. Abovyan), 1980, p. 26-36 (in Russian).
11. Khachatryan Kh.A. On Nontrivial Solutions of a Class Convolution Type Nonlinear Integral Equations. VI Russian-Armenian Conferance on Mathematical Physics and Analitical Mechanics. Rostov-on-Don, 2016, p. 40-41 (in Russian).

[^0]: * E-mail: Khach82@rambler.ru
 ${ }^{* *}$ E-mail: avetisyan.metaqsya@mail.ru

