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Introduction and Statement of the Basic Results. The paper studies issues
on solvability in space l1 infinite nonlinear algebraic system of equations

xn =
∞

∑
j=0

an− jh j (x j)+
∞

∑
j=1

an+ jh∗j (x j) , n = 0,1,2 . . . , (1)

with respect to the unknown infinite vector x = (x0,x1, . . .xn, . . .)
T (T is the sign of

transposition).
The Teoplitz A ≡ (an− j)

∞
n, j=0 and the Hankel B ≡ (an+ j)

∞
n, j=0 matrices

satisfy the conditions

a− j = a j , ∀ j ∈ N∪{0}, an > 0, ∀ n ∈ Z, (2)
∞

∑
i=−∞

ai = 1,
∞

∑
j=0

j2a j <+∞, (3)

an+1 < an, ∀n ∈ N∪{0}. (4)

The system (1) arises in discrete problems of radiative transfer theory
(see [1, 2]). Such type of system also arises in kinetic theory of gases and p-adic
string theory (see [3–5]).
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The papers [6–9] studied system of equations (1) with the conditions (3),(4)

and ν(A)≡
∞

∑
j=−∞

ja j < 0 for the different restrictions on {h j(u)}∞
j=0 and {h∗j(u)}∞

j=0.

In the present paper we will construct componentwise positive l1 solution for
nonlinear system (1) in the symmetric case (see condition (2)) .

The basic result of present note is the following:
T h e o r e m 1. (Basic). Let conditions (2)–(4) are satisfied and there exist

numbers α ∈ (0,1/2] and η ∈ (0,1) such that:

a) for each fixed j ∈ N∪{0} the functions h j(u) and h∗j(u) are increasing on the
interval [Pj(η),1],

Pj(η)≡ η

∞

∑
m= j+1

am, j ∈ N∪{0}; (5)

b) h j,h∗j ∈C[Pj(η),1], j = 0,1,2, . . . ;

c) the following inequalities are satisfied

0≤ h j(u)≤ 1− (1−u)α , u ∈ [Pj(η),1], j = 0,1,2, . . . ; (6)

h∗j(Pj(η))≥ η , h∗j(1)≤ 1, j = 0,1,2, . . . (7)

Then system (1) has componentwise positive solution in space l1, i.e there exists
x = (x0,x1,x2, . . .xn, . . .)

T , satisfying (1). Moreover x j > 0, ∀ j ∈ N ∪ {0}, and
∞

∑
j=0

x j <+∞.

Auxiliary Facts. Together with equation (1) we consider the following
nonlinear auxiliary system:

sn =
∞

∑
j=0

(an− j−an+ j)sα
j , n ∈ N∪{0}, (8)

with respect to the unknown infinite vector S=(s0,s1, ...,sn, ...)
T , where the sequence{

an
}∞

n=−∞
satisfies conditions (2)–(4). We consider the following iteration:

s(p+1)
n =

∞

∑
j=0

(an− j−an+ j)
(

s(p)
j

)α

,

s(0)n ≡ 1, n = 0,1,2 . . . , p = 0,1,2, . . .
(9)

Using (2)–(4), one can easily verify by induction that

s(p)
n ≥ 0, n = 0,1,2, . . . , p = 0,1,2, . . . , (10)

s(p)
n ↓ in p, n = 0,1,2, . . . , (11)

i.e.
∀n ∈ N∪{0}, 0≤ s(p+1)

n ≤ s(p)
n , p = 0,1,2, . . . (12)

Below we prove by induction that

1−S(p) ∈ l1, p = 0,1,2, . . . , (13)
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where 1=(1,1, . . . ,1, . . .)T , S(p) =(s(p)
0 ,s(p)

1 , . . . ,s(p)
n , . . .)T . For p= 0, inclusion (13)

immediately follows from 1−S(0) = (0,0, . . . ,0, . . .)T . Let (13) takes place for some
natural p. Then, taking into account (2)–(4) and (10)–(11), from (9) we obtain

0≤ 1− s(p+1)
n =

∞

∑
j=0

an− j +
∞

∑
j=1

an+ j−
∞

∑
j=0

an− j

(
s(p)

j

)α

+
∞

∑
j=0

an+ j

(
s(p)

j

)α

≤

∞

∑
j=0

an− j

(
1−
(

s(p)
j

)α)
+

∞

∑
m=n+1

am +
∞

∑
m=n

am ≤
∞

∑
j=0

an− j

(
1− s(p)

j

)
+2

∞

∑
m=n+1

am +an.

According to induction assumption (2), (3), from the obtained estimation we get
∞

∑
n=0

(
1− s(p+1)

n

)
≤

∞

∑
j=0

(
1− s(p)

j

)
+2

∞

∑
m=1

mam +
∞

∑
n=0

an <+∞.

Therefore, 1−S(p+1) ∈ l1. Thus the inclusion (13) is proved.
Now consider the following auxiliary infinite linear homogeneous algebraic

system of equations:

τn =
2

1+a0

∞

∑
j=n

(a j−n−a j+n)τ j, n = 0,1,2, . . . , (14)

with respect to the unknown infinite vector τ = (τ0,τ1, . . . ,τn, . . .)
T , where sequence{

ai
}∞

i=−∞
satisfies conditions (2)–(4). We prove below that system (14) besides of

trivial solution (0,0, . . . ,0, . . .)T , provides also a componentwise non-negative non-
trivial solution in the space of bounded sequences. First we consider following non-
homogeneous system:

qn = ρn +
2

1+a0

∞

∑
j=n

(a j−n−a j+n)q j, n = 0,1,2, . . . , (15)

with respect to the infinite vector q = (q0,q1, . . . ,qn, . . .)
T , where

ρn ≡
2

1+a0

∞

∑
m=2n

am, n = 0,1,2, . . . (16)

Direct verification shows, that the vector 1 = (1,1, . . . ,1, . . .)T satisfies (15). Now
we verify that system (15), besides of the trivial solution 1 also has a positive solution
in space l1.

We consider the following “majoranting” linear system

αn = ρn +
2

1+a0

∞

∑
j=n

a j−nα j , n = 0,1,2, . . . , (17)

with respect to the vector α = (α0,α1, . . . ,αn, . . .)
T . From (2)–(4) it follows that

2
1+a0

∞

∑
j=0

a j = 1, (18)

ν(ρ)≡
∞

∑
n=0

nρn ≤
2

1+a0

∞

∑
n=0

n
∞

∑
m=n

am =
2

1+a0

∞

∑
m=0

am

m

∑
n=0

n =

=
1

1+a0

∞

∑
m=0

m(m+1)am <+∞, ρ = (ρ0,ρ1, . . . ,ρn, . . .)
T .

(19)
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Therefore, from results of work [10] it follows that system (17) has a positive
solution in l1. We consider the following iteration:

q(m+1)
n = ρn +

2
1+a0

∞

∑
j=n

(a j−n−a j+n)q
(m)
j ,

q(0)n = ρn, m = 0,1,2, . . . , n = 0,1,2, . . .
(20)

By induction in m it can be proved that for each n ∈ N∪{0} the following relations
hold:

q(m+1)
n ≥ q(m)

n , m = 0,1,2, . . . , (21)

q(m)
n ≤ αn, m = 0,1,2, . . . , (22)

q(m)
n ≤ 1, m = 0,1,2, . . . (23)

From (21)–(23), taking into account Weierstrass theorem, it follows that
the sequence of vectors q(m) = (q(m)

0 ,q(m)
1 , ...,q(m)

n , ...)T has limit:
lim

m→∞
q(m) = q≡ (q0,q1, ...,qn, ..)

T , and moreover

ρn ≤ qn ≤ αn, qn ≤ 1, n = 0,1,2 . . . (24)

From (23), (2) and (3) it follows that the limit vector satisfies system (15). Thus
system (15) besides of the trivial solution 1= (1,1, . . . ,1, . . .)T also has a component-
wise positive solution q = (q0,q1, . . . ,qn, . . .)

T ∈ l1, moreover the components of the
vector q satisfy inequalities (24). Direct checking shows that the vector τ = 1− q
satisfies the system (14). From (24) it follows that

τn ≥ 0, τn 6≡ 0, τn ≤ 1, n = 0,1,2, . . . , (25)

since q ∈ l1. Fixing this solution, we consider the following iteration:

τ
(m+1)
n =

2
1+a0

∞

∑
j=n

(a j−n−a j+n)τ
(m)
j , τ

(0)
n = 1, m = 0,1,2, ..., n = 0,1,2, ... (26)

By induction by m we can check the accuracy of the following statements:

τ
(m+1)
n ≤ τ

(m)
n , τ

(m)
n ≥ τn, n = 0,1,2, . . . , m = 0,1,2, . . . (27)

Rewriting iteration (26) in the form

τ
(m+1)
n =

2
1+a0

∞

∑
i=0

aiτ
(m)
n+i−

2
1+a0

∞

∑
j=n

a j+nτ
(m)
j ,τ

(0)
n = 1, m= 0,1,2, ..., n= 0,1,2, ...

and using (2) and (4), it can be verified that for each m ∈ N∪{0} we have:

τ
(m)
n+1 ≥ τ

(m)
n , n = 0,1,2, . . . (28)

From (27) and (28) it follows that sequence of vector τ(m) = (τ
(m)
0 ,τ

(m)
1 , ...,τ

(m)
n , ...)T ,

m = 0,1,2, . . . , has a limit as m → ∞ that is lim
m→∞

τ(m) = τ∗n , n = 0,1,2, . . .

In addition the limit vector τ∗ = (τ∗0 ,τ
∗
1 , . . . ,τ

∗
n , . . .)

T satisfies system (14) and
satisfies the following properties:

τn ≤ τ
∗
n ≤ 1, n = 0,1,2, . . . , (29)

τ
∗
n+1 ≥ τ

∗
n , n = 0,1,2, . . . (30)
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Since τn ≥ 0, τn 6≡ 0, we have τ∗n ≥ 0, τ∗n 6≡ 0. Therefore, there exists number n0 ∈ N
such that τ∗n0

> 0. From (30) it follows for n≥ n0 that

τ
∗
n ≥ τ

∗
n0
> 0. (31)

Return to the sequence of vectors
{

S(p)
}∞

p=0 . Using the sequence approximation
method, we prove that

s(p)
n ≥

τ∗n
sup

n∈N∪{0}
τ∗n

(
1+a0

2

) 1
1−α

, n = 0,1,2, . . . , p = 0,1,2, . . . (32)

In the case p = 0 the inequality (32) follows from the following chain of inequalities:

τ∗n
sup

n∈N∪{0}
τ∗n

(
1+a0

2

) 1
1−α

≤
(

1+a0

2

) 1
1−α

≤ 1 = s(0)n .

Let inequality (32) holds for some natural p. Then from (9), taking into
account (2)–(4) and (14), we get

s(p+1)
n ≥

∞

∑
j=0

(an− j−an+ j)

 τ∗j
sup

n∈N∪{0}
τ∗n


α(

1+a0

2

) α

1−α

≥

≥
(

1+a0

2

) α

1−α

(
sup

n∈N∪{0}
τ
∗
n

)−α
∞

∑
j=n

(an− j−an+ j)(τ
∗
j )

α ≥

≥
(

1+a0

2

) α

1−α

(
sup

n∈N∪{0}
τ
∗
n

)−1
∞

∑
j=n

(an− j−an+ j)τ
∗
j =

=

(
1+a0

2

) α

1−α

· 1+a0

2
· τ∗n

sup
n∈N∪{0}

τ∗n
=

(
1+a0

2

) 1
1−α τ∗n

sup
n∈N∪{0}

τ∗n
.

From (11) and (32) it follows that sequence of vectors S(p)=(s(p)
0 ,s(p)

1 , . . . ,s(p)
n , . . .)T ,

p = 0,1,2, . . . , has a limit as p→∞, i.e. lim
p→∞

S(p) = S = (s0,s1, . . . ,sn, . . .)
T , then the

limit vector S satisfies (8) and the inequality(
1+a0

2

) 1
1−α τ∗n

sup
n∈N∪{0}

τ∗n
≤ sn ≤ 1, n ∈ N∪{0}. (33)

From (33) and (31) for n≥ n0 it also follows that

sn ≥
(

1+a0

2

) 1
1−α τ∗n0

sup
n∈N∪{0}

τ∗n
> 0. (34)

Thus proves the following:
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T h e o r e m 2. Let the sequence {ai}∞
i=−∞

satisfy condition (2)–(4), and

α ∈
(

0,
1
2

]
. Then the system (8) has a componentwise non-negative solution

S = (s0,s1, . . . ,sn, . . .)
T in space of bounded sequences. Moreover each component

of the vector S satisfies inequalities (33) and (34).
In the following theorem we will additionally prove that

1−S ∈ l1. (35)

T h e o r e m 3. Let the conditions of the Theorem 2 are satisfied. Then the
constructed solution S satisfies additional property (35).

P r o o f . First note that from (2)–(4) follows that

γ ≡
n0

∑
j=−∞

a j < 1. (36)

Using inclusion (13) below, by induction we prove that
∞

∑
n=0

(1− s(p)
n )≤

(
2

∞

∑
m=1

mam +
∞

∑
n=0

an

)
(1− ε)−1, (37)

where

ε ≡max(γ,β ), β ≡

1+

√√√√√(1+a0

2

) 1
1−α τ∗n0+1

sup
n∈N∪{0}

τ∗n


−1

. (38)

In the case p = 0 the inequality (37) obviously follows from (9). Let (37) holds for
some p ∈ N. We prove (37) in the case p+1. Taking into account (2)–(4), (34), (36)
from (9), we obtain:

∞

∑
n=0

(
1− s(p+1)

n

)
≤

∞

∑
n=0

∞

∑
j=0

an− j

(
1−
(

s(p)
j

)α)
+2

∞

∑
m=1

mam +
∞

∑
n=0

an =

= 2
∞

∑
m=1

mam +
∞

∑
n=0

an +
∞

∑
j=0

(
1−
(

s(p)
j

)α) ∞

∑
n=0

an− j ≤

≤ 2
∞

∑
m=1

mam +
∞

∑
n=0

an +
∞

∑
j=0

(
1−
√

s(p)
j

) j

∑
m=−∞

am =

= 2
∞

∑
m=1

mam +
∞

∑
n=0

an +
n0

∑
j=0

(
1−
√

s(p)
j

) j

∑
m=−∞

am+

+
∞

∑
j=n0+1

(
1−
√

s(p)
j

) j

∑
m=−∞

am ≤ 2
∞

∑
m=1

mam +
∞

∑
n=0

an + γ

n0

∑
j=0

(
1−
√

s(p)
j

)
+

+
∞

∑
j=n0+1

1− s(p)
j

1+
√

s(p)
j

≤ 2
∞

∑
m=1

mam +
∞

∑
n=0

an + γ

n0

∑
j=0

(
1− s(p)

j

)
+β

∞

∑
j=n0+1

(
1− s(p)

j

)
≤
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≤ 2
∞

∑
m=1

mam +
∞

∑
n=0

an + ε

(
n0

∑
j=0

(
1− s(p)

j

)
+

∞

∑
j=n0+1

(
1− s(p)

j

))
≤

≤ 2
∞

∑
m=1

mam +
∞

∑
n=0

an + ε

∞

∑
j=0

(
1− s(p+1)

j

)
⇒

⇒
∞

∑
j=0

(
1− s(p+1)

j

)
≤

(
2

∞

∑
m=1

mam +
∞

∑
n=0

an

)
(1− ε)−1.

Thus inequality (37) is proved. Tending p to infinity in (37) completes the
Proof of Theorem. �

R e m a r k . It we note that the Theorems 2 and 3 are the discrete analogues
of the results obtained earlier in [11].

Proof of the Basic Results. Examples of Functions {h j}∞
j=0 and {h∗j}∞

j=1.
Consider the following iteration for the basic system (1)

x(p+1)
n =

∞

∑
j=0

an− jh j

(
x(p)

j

)
+

∞

∑
j=1

an+ jh∗j
(

x(p)
j

)
,

x(0)n = 1− sn, p = 0,1,2, . . . , n = 0,1,2, . . . ,
(39)

where S = (s0,s1, . . . ,sn, . . .)
T are the solution of the system (8) and satisfies

properties (33)–(35). By induction we will prove that for each n ∈ N∪{0}:
x(p)

n ↓ in p, (40)
x(p)

n ≥ Pn(η), p = 0,1,2, . . . , (41)

where Pn(η) is given by formula (5). First we verify that x(1)n ≤ x(0)n and x(0)n ≥Pn(η),
n = 0,1,2, . . . Indeed, from (8), taking into account (2)–(3), we have

x(0)n = 1− sn =
∞

∑
j=0

an− j(1− sα
j )+

∞

∑
j=n+1

a j +
∞

∑
j=0

an+ jsα
j ≥

≥
∞

∑
j=n+1

a j ≥ η

∞

∑
j=n+1

a j = Pn(η), x(0)n ≤ 1.

Using conditions (6), (7), taking into account (2)–(4), from (39) we get

x(1)n ≤
∞

∑
j=0

an− j

(
1−
(

1− x(0)j

)α)
+

∞

∑
j=1

an+ jh∗j
(

x(0)j

)
≤

≤
∞

∑
j=0

an− j
(
1− sα

j
)
+

∞

∑
j=1

an+ j = 1−
∞

∑
j=0

an− jsα
j +

∞

∑
j=0

an+ jsα
j −

∞

∑
j=0

an+ jsα
j =

= 1−
∞

∑
j=0

(an− j−an+ j)sα
j −

∞

∑
j=0

an+ jsα
j ≤ 1− sn .

Assuming that x(p)
n ≤ x(p−1)

n and x(p)
n ≥ Pn(η), n = 0,1,2, . . . , for some p ∈ N and

taking into account the monotonicity h j(u), j = 0,1,2, . . . , h∗j(u), j = 1,2, . . . , on
u, from (39) we obtain

x(p+1)
n ≤

∞

∑
j=0

an− jh j

(
x(p−1)

j

)
+

∞

∑
j=1

an+ jh∗j
(

x(p−1)
j

)
= x(p)

n ,



Khachatryan Kh.A., Avetisyan M.H. On Solvability of an Infinite Nonlinear System... 165

x(p+1)
n ≥

∞

∑
j=0

an− jh j(Pj(η))+
∞

∑
j=1

an+ jh∗j(Pj(η))≥

≥
∞

∑
j=1

an+ jh∗j(Pj(η))≥ η

∞

∑
j=1

an+ j = Pn(η).

From (40) and (41) we obtain that the sequence of vectors
x(p) = (x(p)

0 ,x(p)
1 , . . . ,x(p)

n , . . .)T , p = 0,1,2, . . . , has a limit as p→ ∞:

lim
p→∞

x(p) = x = (x0,x1, . . . ,xn, . . .)
T .

From (40) and (41) it also follows that

Pn(η)≤ xn ≤ 1− sn, n = 0,1,2, . . . (42)

Since 1 − S ∈ l1, then from (42) we obtain that x ∈ l1. Now we verify that
vector x satisfies system (1). First we note that the sum of series

∞

∑
j=0

an− jh j(x j)+
∞

∑
j=0

an+ jh∗j(x j)

is bounded uniformly in n. Using (42), (6), (7) and (2)–(4), we get
∞

∑
j=0

an− jh j(x j)+
∞

∑
j=1

an+ jh∗j(x j)≤
∞

∑
j=0

an− j(1− (1− x j)
α)+

+
∞

∑
j=1

an+ jh∗j(1)≤
∞

∑
j=0

an− j +
∞

∑
j=1

an+ j = 1 <+∞.

On the other hand, h j,h∗j ∈C[Pj(η),1], j = 0,1, . . . Hence, we can pass to the limit in
the summation sign as p→∞. Indeed in (39) passing to the limit, taking into account
above mentioned Remark, we obtain

xn = lim
p→∞

x(p+1)
n = lim

p→∞

(
∞

∑
j=0

an− jh j

(
x(p)

j

)
+

∞

∑
j=1

an+ jh∗j
(

x(p)
j

))
=

=
∞

∑
j=0

an− j lim
p→∞

(
h j

(
x(p)

j

))
+

∞

∑
j=1

an+ j lim
p→∞

(
h∗j
(

x(p)
j

))
=

=
∞

∑
j=0

an− jh j

(
lim
p→∞

x(p)
j

)
+

∞

∑
j=1

an+ jh∗j

(
lim
p→∞

x(p)
j

)
=

∞

∑
j=0

an− jh j(x j)+
∞

∑
j=1

an+ jh∗j(x j).

Thus the Theorem 1 is proved.
At the end of the work we list some examples of functions {h j}∞

j=0 , {h∗j}∞
j=1

satisfying all conditions of Basic Theorem 1:

1. h j (u) =
(
1− (1−u)α

)
c j, where α ∈

(
0,

1
2

]
, 0 < c j ≤ 1, j = 0,1,2, . . . ,

u ∈ [Pj (η) ,1] ,
h∗j(u) =

u
u+Pj (1−η)

, η ∈ (0,1) , u ∈ [Pj (η) ,1] , j = 1,2,3, . . . ;
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2. h j (u) = ln
(
2− (1−u)α

)
d j (u) , α ∈

(
0,

1
2

]
, 0 < d j(u)≤ 1, u∈ [Pj (η) ,1] ,

d j (u) ↑ in u on [Pj (η) ,1] , d j ∈C [Pj (η) ,1] , j = 0,1,2, . . . ,

h∗j (u)=
u

u+Pj (1−η)
+

Pj (1−η)

1+Pj (1−η)
ur, r > 1, u∈ [Pj (η) ,1] , j = 1,2,3, ...;

3. h j (u)=
1− (1−u)α + ln

(
2− (1−u)α

)
2

d j (u) , u∈ [Pj (η) ,1] , j = 0,1,2, ...,

h∗j (u) =

((
u

1+Pj (1−η)

)2

+
ur+1Pj (1−η)

(u+Pj (1−η))(1+Pj (1−η))

) 1
2

, r > 1,

u ∈ [Pj (η) ,1] , j = 1,2,3, . . .

The examples of sequences
{

d j(u)
}∞

j=0 can serve the following functions:

1. d j (u) = 1−δ je−u;

2. d j (u) =
δ ju

1+u
, 0 < δ j ≤ 1, j = 0,1,2, . . .

Discuss same the details of Example 2.
Since d j (u) ↑ in u on [Pj (η) ,1] , j = 0,1,2, . . . , and
d

du

(
ln
(
2− (1−u)α

) )
=

1
2− (1−u)α

α

(1−u)1−α
> 0 , j = 0,1,2, . . . ,

u ∈ [Pj (η) ,1] ,h j (u)≥ d j (u) ln1 = 0 ,

dh∗j(u)

du
=

Pj (1−η)

(u+Pj (1−η))2 +
rPj (1−η)

1+Pj (1−η)
ur−1 > 0, j = 1,2, . . . , u ∈ [Pj (η) ,1] ,

condition a) of Theorem 1 is satisfied. The condition b) is also satisfied, since the
given functions are continuous on [0,1]⊃ [Pj (η) ,1] , ∀ j = 0,1,2, . . . We cheek the
condition c). Taking into account ln(1+ x)≤ x, x≥ 0, we have

h j (u) = ln
(
1+1− (1−u)α

)
d j (u)≤ ln

(
1+1− (1−u)α

)
≤ 1− (1−u)α ,

h j (u)≥ d j (u) ln1 = 0,

h∗j (Pj (η)) =
Pj (η)

Pj (η)+Pj (1−η)
+

Pj (1−η)

1+Pj (1−η)
Pr

j (η)≥

≥
η

∞

∑
k= j+1

ak

η

∞

∑
k= j+1

ak +(1−η)
∞

∑
k= j+1

ak

= η ,

h∗j (1) =
1

1+Pj (1−η)
+

Pj (1−η)

1+Pj (1−η)
= 1.
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