Informatics

ON CANONICAL NOTION OF δ-REDUCTION AND ON TRANSLATION OF TYPED λ-TERMS INTO UNTYPED λ-TERMS

S. A. NIGIYAN * T. V. KHONDKARYAN**
Chair of Programming and Information Technologies YSU, Armenia

Abstract

In the paper typed and untyped λ-terms are considered. Typed λ-terms use variables of any order and constants of order ≤ 1. Constants of order 1 are strong computable functions with indeterminate values of arguments and every function has an untyped λ-term that λ-defines it. The so-called canonical notion of δ-reduction is introduced. This is the notion of δ-reduction that is used in the implementation of functional programming languages. For the canonical notion of δ-reduction the translation of typed λ-terms into untyped λ-terms is studied.

MSC2010: 68N18.
Keywords: typed λ-term, untyped λ-term, translation, notion of δ-reduction, λ-definability.
Typed λ-terms, Canonical Notion of δ-Reduction. The definitions of this section can be found in [1-3]. A partially ordered set is said to be complete, if each of its linear ordered subsets has the least upper bound. It is easy to see that every complete set has a least element. Let A, B be nonempty partially ordered sets. A mapping $\varphi: A \rightarrow B$ is said to be monotonic, if $a \subseteq b$ implies $\varphi(a) \subseteq \varphi(b)$ for all $a, b \in A$ (\subseteq is the symbol for partial ordering relation).

Let M be a partially ordered set, which has an element \perp, which corresponds to the indeterminate value. Each element of M is comparable with itself and with \perp, which is the least element of M. Let us define the set of types (denoted by Types).

1. $M \in$ Types.
2. If $\beta, \alpha_{1}, \ldots, \alpha_{k} \in$ Types $(k>0)$, then the set of all monotonic mappings from $\alpha_{1} \times \ldots \times \alpha_{k}$ into β (denoted by $\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$) belongs to Types.

If $\alpha \in$ Types, then the order of type α (denoted by $\operatorname{ord}(\alpha))$ will be a natural number, which is defined in the following way: if $\alpha=M$, then $\operatorname{ord}(\alpha)=0$, if $\alpha=\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$, where $\beta, \alpha_{1}, \ldots \alpha_{k} \in$ Types, $k>0$, then $\operatorname{ord}(\alpha)=1+\max \left(\operatorname{ord}\left(\alpha_{1}\right), \ldots, \operatorname{ord}\left(\alpha_{k}\right), \operatorname{ord}(\beta)\right)$, if x is a variable of type α and a constant $c \in \alpha$, then $\operatorname{ord}(x)=\operatorname{ord}(c)=\operatorname{ord}(\alpha)$. Every type $\alpha \in$ Types is a complete set (see [1]).

Let $\alpha \in$ Types and V_{α}^{T} be a countable set of variables of type α, then $V^{T}=\bigcup_{\alpha \in \text { Types }} V_{\alpha}^{T}$ is the set of all variables. The set of all terms, denoted by $\Lambda^{T}=\bigcup_{\alpha \in \text { Types }} \Lambda_{\alpha}^{T}$, where Λ_{α}^{T} is the set of terms of type α, is defined in the following way:

[^0]1. If $c \in \alpha, \alpha \in$ Types, then $c \in \Lambda_{\alpha}^{T}$;
2. If $x \in V_{\alpha}^{T}, \alpha \in$ Types, then $x \in \Lambda_{\alpha}^{T}$;
3. If $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]}^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}$, where $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, \quad k \geq 1$, then $\tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\beta}^{T}$ (the operation of application);
4. If $\tau \in \Lambda_{\beta}^{T}, x_{i} \in V_{\alpha_{i}}^{T}$, where $\beta, \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \neq x_{j}, i, j=1, \ldots, k, k \geq 1$, then $\lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]}^{T}$ (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as the notion of a free variable are introduced in the ordinary way. The set of all free variables of a term t is denoted by $F V(t)$. A term which doesn't contain free variables is called a closed term. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables. In what follows congruent terms are considered identical.

Let $t \in \Lambda_{\alpha}^{T}, \quad \alpha \in$ Types and $F V(t) \subset\left\{y_{1}, \ldots, y_{n}\right\}, \overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$, where $y_{i} \in V_{\beta_{i}}^{T}, y_{i}^{0} \in \beta_{i}, \beta_{i} \in$ Types, $i=1, \ldots, n, n \geq 0$. The value of the term t for the values of the variables y_{1}, \ldots, y_{n} equal to $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$ is denoted by $\operatorname{Val}_{\overline{y_{0}}}(t)$ and defined as follows:

1. If $t \equiv c$ and $c \in \alpha$, then $\operatorname{Val}_{\overline{y_{0}}}(c)=c$;
2. If $t \equiv x, x \in V_{\alpha}^{T}$, then $\operatorname{Val}_{\overline{y_{0}}}(x)=y_{i}^{0}$, where $F V(x)=\{x\} \subset\left\{y_{1}, \ldots, y_{n}\right\}$ and $x \equiv y_{i}$, $i=1, \ldots, n, n \geq 1$;
3. If $t \equiv \tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\alpha}^{T}$, where $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \alpha\right]}^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i=1, \ldots, k$, $k \geq 1$, then $\operatorname{Val}_{\bar{y}_{0}}\left(\tau\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{Val}_{\overline{y_{0}}}(\tau)\left(\operatorname{Val}_{\bar{y}_{0}}\left(t_{1}\right), \ldots, \operatorname{Val}_{\overline{y_{0}}}\left(t_{k}\right)\right) ;$
4. If $t \equiv \lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\alpha}^{T}$, where $\alpha=\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right], \quad \tau \in \Lambda_{\beta}^{T}, \quad x_{i} \in V_{\alpha_{i}}^{T}$, $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\operatorname{Val}_{\bar{y}_{0}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right) \in\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$ and is defined as follows: let $\left\{y_{1}, \ldots, y_{n}\right\} \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\left\{y_{j_{1}}, \ldots, y_{j_{s}}\right\}, s \geq 0$, and $\overline{z_{0}}=\left\langle y_{j_{1}}^{0}, \ldots, y_{j_{s}}^{0}\right\rangle$, then for any $\overline{x_{0}}=\left\langle x_{1}^{0}, \ldots, x_{k}^{0}\right\rangle$, where $x_{i}^{0} \in \alpha_{i}, i=1, \ldots, k, \operatorname{Val}_{\overline{y_{0}}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right)\left(x_{1}^{0}, \ldots, x_{k}^{0}\right)=$ $=\operatorname{Val}_{\overline{x_{0}}, \overline{z_{0}}}(\tau)$, where $\overline{x_{0}}, \overline{z_{0}}=\left\langle x_{1}^{0}, \ldots, x_{k}^{0}, y_{j_{1}}^{0}, \ldots, y_{j_{s}}^{0}\right\rangle$.

It follows from [1], that for any $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$ and $\overline{y_{1}}=\left\langle y_{1}^{1}, \ldots, y_{n}^{1}\right\rangle$ such that $\overline{y_{0}} \subseteq \overline{y_{1}}$, where $y_{i}^{0}, y_{i}^{1} \in \beta_{i}(1 \leq i \leq n)$, we have the following:

1. $\operatorname{Val}_{\bar{y}_{0}}(t) \in \alpha$;
2. $\operatorname{Val}_{\bar{y}_{0}}(t) \subseteq \operatorname{Val}_{\bar{y}_{1}}(t)$.

Let terms $t_{1}, t_{2} \in \Lambda_{\alpha}^{T}, \alpha \in$ Types, $F V\left(t_{1}\right) \cup F V\left(t_{2}\right)=\left\{y_{1}, \ldots, y_{n}\right\}, \quad y_{i} \in V_{\beta_{i}}^{T}$, $\beta_{i} \in$ Types, $\quad i=1, \ldots, n, n \geq 0$, then terms t_{1} and t_{2} are called equivalent (denoted by $t_{1} \sim t_{2}$), if for any $\overline{y_{0}}=<y_{1}^{0}, \ldots, y_{n}^{0}>$, where $y_{i}^{0} \in \beta_{i}, i=1, \ldots, n$, we have the following: $\operatorname{Val}_{\bar{y}_{0}}\left(t_{1}\right)=\operatorname{Val}_{\bar{y}_{0}}\left(t_{2}\right)$. A term $t \in \Lambda_{\alpha}^{T}, \alpha \in$ Types, is called a constant term with value $a \in \alpha$, if $t \sim a$.

Lemma 1. Let $t \in \Lambda_{M}^{T}, F V(t)=\left\{y_{1}, \ldots, y_{n}\right\}, \quad y_{i} \in V_{\beta_{i}}^{T}, \quad \beta_{i} \in$ Types, $i=1, \ldots, n$, $n \geq 0$, and for every $m \in M \backslash\{\perp\}, t \nsim m$, then $\operatorname{Val}_{\bar{\Omega}}(t)=\perp$, where $\bar{\Omega}=\left\langle\Omega_{1}, \ldots, \Omega_{n}\right\rangle, \quad \Omega_{i}$ is the least element of the type $\beta_{i}, i=1, \ldots, n$.

Proof. If $t \sim \perp$, then it is obvious that $\operatorname{Val}_{\bar{\Omega}}(t)=\perp$. If $t \nsim \perp$, then there exists such $m \in M \backslash\{\perp\}$ and $\overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$, where $y_{i}^{0} \in \beta_{i}, i=1, \ldots, n$, that $\operatorname{Val}_{\overline{y_{0}}}(t)=m$. Since $\bar{\Omega} \subseteq \overline{y_{0}}$, we have $\operatorname{Val}_{\bar{\Omega}}(t) \subseteq \operatorname{Val}_{\overline{y_{0}}}(t)$ and from $t \nsim m$ it follows that $\operatorname{Val}_{\bar{\Omega}}(t) \neq m$. Thus we get $\operatorname{Val}_{\bar{\Omega}}(t)=\perp$.

Further, is assumed that M is a recursive set and considered terms use variables of any order and constants of order ≤ 1, where the constants of order 1 are strong computable, monotonic functions with indeterminate values of arguments. A function $f: M^{k} \rightarrow M, k \geq 1$, with indeterminate values of arguments is said to be strong computable, if there exists an algorithm, which stops with value $f\left(m_{1}, \ldots, m_{k}\right)$ for all $m_{1}, \ldots, m_{k} \in M$ (see [2]). We suppose
that each strong computable function with indeterminate values of arguments is given by its algorithm. We denote all such terms by Λ^{T} and denote all such terms of type α by Λ_{α}^{T}.

The notation $t\left[t_{1}, \ldots, t_{k}\right]$ is used to show mutually different variables of interest x_{1}, \ldots, x_{k}, $k \geq 1$, of a term t. The notation $t\left[t_{1}, \ldots, t_{k}\right]$ denotes the term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{k} for all free occurrences of variables x_{1}, \ldots, x_{k} respectively, where $x_{i} \in V_{\alpha_{i}}^{T}, i \neq j \Rightarrow x_{i} \not \equiv x_{j}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term $t \in \Lambda^{T}$ with a fixed occurrence of a subterm $\tau_{1} \in \Lambda_{\alpha}^{T}$, where $\alpha \in$ Types, is denoted by $t_{\tau_{1}}$ and a term with this occurrence of τ_{1} replaced by τ_{2}, where $\tau_{2} \in \Lambda_{\alpha}^{T}$ is denoted by $t_{\tau_{2}}$.

A term of the form $\lambda x_{1} \ldots x_{k}\left[\tau\left[x_{1}, \ldots, x_{k}\right]\right]\left(t_{1}, \ldots, t_{k}\right)$, where $x_{i} \in V_{\alpha_{i}}^{T}$, $i \neq j \Rightarrow x_{i} \not \equiv x_{j}, \tau \in \Lambda^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$, is called a β-redex, its convolution is the term $\tau\left[t_{1}, \ldots, t_{k}\right]$. The set of all pairs (τ_{0}, τ_{1}), where τ_{0} is a β-redex and τ_{1} is its convolution, is called a notion of β-reduction and is denoted by β.

A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$.

A term containing no β-redexes is called a β-normal form. The set of all β-normal forms is denoted by $\beta-N F^{T}$. It follows from [4] that every term $t \in \Lambda^{T}$ is strongly β-normalized, i.e. every β-reduction chain for the term t has a finite length. Therefore, for every term $t \in \Lambda^{T}$ there exists a term $\tau \in \beta-N F^{T}$ such that $t \rightarrow \rightarrow_{\beta} \tau$.
δ-redex has a form $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}, i=1, \ldots, k$, $k \geq 1$, its convolution is either $m \in M$ and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim m$ or a subterm t_{i} and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim t_{i}, i=1, \ldots, k$. A fixed set of term pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a δ-redex and τ_{1} is its convolution, is called a notion of δ-reduction and is denoted by δ.

A term t_{1} is said to be obtained from a term t_{0} by one-step δ-reduction (denoted by $t_{0} \rightarrow_{\delta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a δ-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by δ-reduction (denoted by $t_{0} \rightarrow_{\delta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\delta} t_{i+1}$, where $i=1, \ldots, n-1$.

A term containing no δ-redexes is called a δ-normal form. The set of all δ-normal forms is denoted by $\delta-N F^{T}$. It follows from [4], that every term $t \in \Lambda^{T}$ is strongly δ-normalized, i.e. every δ-reduction chain for the term t has a finite length. Therefore, for every term $t \in \Lambda^{T}$ there exists a term $\tau \in \delta-N F^{T}$ such that $t \rightarrow_{\delta} \tau$.

A term t_{1} is said to be obtained from a term t_{0} by one-step $\beta \delta$-reduction (denoted by $t_{0} \rightarrow_{\beta \delta} t_{1}$), if either $t_{0} \rightarrow_{\beta} t_{1}$ or $t_{0} \rightarrow_{\delta} t_{1}$. A term t is said to be obtained from a term t_{0} by $\beta \delta$-reduction (denoted by $t_{0} \rightarrow_{\beta \delta} t$), if there exists a finite sequence of terms t_{1}, \ldots, t_{n} $(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta \delta} t_{i+1}$, where $i=1, \ldots, n-1$.

A term containing no $\beta \delta$-redexes is called a normal form. The set of all normal forms is denoted by $N F^{T}$. Due to [4] every term $t \in \Lambda^{T}$ is strongly $\beta \delta$-normalized, i.e. every $\beta \delta$-reduction chain for the term t has a finite length. Therefore, for every term $t \in \Lambda^{T}$ there exists a term $\tau \in N F^{T}$ such that $t \rightarrow_{\beta \delta} \tau$.

Note, that if $t_{1} \rightarrow \rightarrow_{\beta \delta} t_{2}$, then $t_{1} \sim t_{2}$, where $t_{1}, t_{2} \in \Lambda_{\alpha}^{T}, \alpha \in$ Types [4].
A notion of δ-reduction is called a single-valued notion of δ-reduction if δ is a singlevalued relation, i.e. if $\left\langle\tau_{0}, \tau_{1}\right\rangle \in \delta$ and $\left\langle\tau_{0}, \tau_{2}\right\rangle \in \delta$, then $\tau_{1} \equiv \tau_{2}$, where $\tau_{0}, \tau_{1}, \tau_{2} \in \Lambda_{M}^{T}$.

A notion of δ-reduction is called an effective notion of δ-reduction, if there
exists an algorithm, which gives its convolution, if $f\left(t_{1}, \ldots, t_{k}\right)$ is a δ-redex and stops with a negative answer otherwise for any term $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}$, $i=1, \ldots, k, k \geq 1$.

Definition 1. An effective, single-valued notion of δ-reduction is called a canonical notion of δ-reduction, if:

1. $t \in \beta-N F^{T}, t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow_{\delta} m ;$
2. $t \in \beta-N F^{T}, F V(t)=\emptyset, t \sim \perp \Rightarrow t \rightarrow \rightarrow_{\delta} \perp$.

If $t \in \beta-N F^{T}, t \sim m, m \in M \backslash\{\perp\}$, then $t \equiv m$ or $t \equiv f\left(t_{1}, \ldots, t_{k}\right)$, where $t_{i} \in \Lambda_{M}^{T}, \quad t_{i} \in \beta-N F^{T}, f \in\left[M^{k} \rightarrow M\right], i=1, \ldots, k, k \geq 1$. We introduce the notion of rank for such terms: $\operatorname{rank}(m)=0, \operatorname{rank}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=1+\max \left(\operatorname{rank}\left(t_{j_{1}}\right), \ldots, \operatorname{rank}\left(t_{j_{s}}\right)\right)$, where $t_{j_{r}}(1 \leq r \leq s, s \geq 0)$ is a constant term with value belonging to $M \backslash\{\perp\}$ and $t_{j_{1}}, \ldots, t_{j_{s}}$ is the maximal subsequence (of such terms) for the sequence t_{1}, \ldots, t_{k}.

Theorem 1. On Canonical Notion of δ-Reduction. For every recursive set of strong computable, monotonic functions with indeterminate values of arguments there exists a canonical notion of δ-reduction.

Proof. Let C be a recursive set of strong computable, monotonic functions with indeterminate values of arguments. Now we define the notion of δ-reduction for the set C. For every function $f \in C$, where $f: M^{k} \rightarrow M, k \geq 1$, we have:
if $f\left(m_{1}, \ldots, m_{k}\right)=m$, where $m, m_{1}, \ldots, m_{k} \in M, m \neq \perp$, then $\left\langle f\left(\mu_{1}, \ldots, \mu_{k}\right), m\right\rangle \in \delta$, where $\mu_{i}=m_{i}$ if $m_{i} \neq \perp$, and $\mu_{i} \equiv t_{i}, t_{i} \in \Lambda_{M}^{T}$ if $m_{i}=\perp, i=1, \ldots, k, k \geq 1$;
if $f\left(m_{1}, \ldots, m_{k}\right)=\perp$, where $m_{1}, \ldots, m_{k} \in M$, then $\left\langle f\left(m_{1}, \ldots, m_{k}\right), \perp\right\rangle \in \delta$.
Let us show that δ is a canonical notion of δ-reduction. It is easy to see that δ is an effective, single-valued notion of δ-reduction.

1. Let $t \in \beta-N F^{T}, t \sim m, m \in M \backslash\{\perp\}$. Let us show that $t \rightarrow_{\delta} m$. If $\operatorname{rank}(t)=0$, then $t \equiv m$, and $t \rightarrow_{\delta} m$. Let $\operatorname{rank}(t)=n>0$, then $t \equiv f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in C$ and $t_{i} \in \Lambda_{M}^{T}, t_{i} \in \beta-N F^{T}, i=1, \ldots, k, k \geq 1$, and we suppose that Def. 1 (p. 1) holds for the terms of a rank $<n$. If $t_{i} \sim m_{i}, m_{i} \in M \backslash\{\perp\}$, then by the induction hypothesis, $t_{i} \rightarrow \rightarrow_{\delta} m_{i}$, $i=1, \ldots, k$. Therefore $f\left(t_{1}, \ldots, t_{k}\right) \rightarrow_{\delta} f\left(\tau_{1}, \ldots, \tau_{k}\right)$, where $\tau_{i}=m_{i}$ if $t_{i} \sim m_{i}, m_{i} \in M \backslash\{\perp\}$, and $\tau_{i} \equiv t_{i}$, otherwise, $i=1, \ldots, k$. According to the Lemma 1 we have $f\left(\mu_{1}, \ldots, \mu_{k}\right)=m$, where $\mu_{i} \equiv \tau_{i}$ if $\tau_{i}=m_{i}, m_{i} \in M \backslash\{\perp\}$ and $\mu_{i}=\perp$ otherwise. Thus, $\left\langle f\left(\tau_{1}, \ldots, \tau_{k}\right), m\right\rangle \in \delta$, $f\left(t_{1}, \ldots, t_{k}\right) \rightarrow_{\delta} f\left(\tau_{1}, \ldots, \tau_{k}\right) \rightarrow_{\delta} m$ and $t \rightarrow \rightarrow_{\delta} m$.
2. Let $t \in \beta-N F^{T}, F V(t)=\emptyset, t \sim \perp$. It is easy to see that in this case $t \rightarrow \rightarrow_{\delta} \perp$

Theorem 2. Let δ be a canonical notion of δ-reduction, then:

1. $t \in \Lambda_{M}^{T}, t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow_{\beta \delta} m$;
2. $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \sim \perp \Rightarrow t \rightarrow_{\beta \delta} \perp$.

Proof.

1) Let $t \in \Lambda_{M}^{T}, t \sim m, m \in M \backslash\{\perp\}$, then, according to [4], there exists a term $\tau \in \beta-N F^{T}$ such that $t \rightarrow \rightarrow_{\beta} \tau$ and $\tau \sim m$. Therefore, according to the Def. 1(p. 1) we have $\tau \rightarrow_{\delta} m$, and $t \rightarrow_{\beta \delta} m$.
2) If $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \sim \perp$, then, according to [4], there exists a term $\tau \in \beta-N F^{T}, F V(\tau)=\emptyset$ such that $t \rightarrow_{\beta} \tau$ and $\tau \sim \perp$. Therefore, according to the Def. 1 (p. 2) we have $\tau \rightarrow_{\delta} \perp$, and $t \rightarrow \rightarrow_{\beta \delta} \perp$.

Lemma 2. Let δ be a canonical notion of δ-reduction, let $t[x] \in \Lambda_{M}^{T}, x \in V_{\alpha}^{T}$, $\alpha \in$ Types and $t[x] \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\}$. Then for any $\tau \in \Lambda_{\alpha}^{T}$ we have $t[\tau] \rightarrow_{\beta \delta} m$.
$\boldsymbol{P r o o f} . \lambda x[t[x]](\tau) \rightarrow_{\beta \delta} \lambda x[m](\tau) \rightarrow_{\beta} m$, therefore, according to [4] we have $\lambda x[t[x]](\tau) \sim m$. On the other hand, $\lambda x[t[x]](\tau) \rightarrow_{\beta} t[\tau]$ and according to $[4] t[\tau] \sim m$ and so from the p. 1 of Theorem 2, we get $t[\tau] \rightarrow \rightarrow_{\beta \delta} m$.

Untyped λ-Terms. The definitions of this section can be found in [3.5]. Let us fix a countable set of variables V. The set of terms Λ is defined as follows:

1. if $x \in V$, then $x \in \Lambda$;
2. if $t_{1}, t_{2} \in \Lambda$, then $\left(t_{1} t_{2}\right) \in \Lambda$ (the operation of application);
3. if $x \in V$ and $t \in \Lambda$, then $(\lambda x t) \in \Lambda$ (the operation of abstraction).

Let us introduce the following shorthand notations: a term $\left(\ldots\left(t_{1} t_{2}\right) \ldots t_{k}\right)$, where $t_{i} \in \Lambda, i=1, \ldots, k, k>1$, is denoted by $t_{1} t_{2} \ldots t_{k}$ and a term $\left(\lambda x_{1}\left(\lambda x_{2}\left(\ldots\left(\lambda x_{n} t\right) \ldots\right)\right)\right.$, where $x_{j} \in V, j=1, \ldots, n, n>0, t \in \Lambda$, is denoted by $\lambda x_{1} x_{2} \ldots x_{n} . t$.

The notions of free and bound occurrences of variables in terms as well as the notion of free variable are introduced in the conventional way. The set of all free variables of a term t is denoted by $F V(t)$. A term, which doesn't contain free variables, is called a closed term. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables. In what follows congruent terms are considered identical.

The notation $t\left[x_{1}, \ldots, x_{k}\right]$ is used to show mutually different variables of interest $x_{1}, \ldots, x_{k}, k \geq 1$, of a term t. The notation $t\left[t_{1}, \ldots, t_{k}\right]$ denotes the term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{k} for all free occurrences of variables x_{1}, \ldots, x_{k} respectively, $i \neq j \Rightarrow x_{i} \not \equiv x_{j}, i, j=1, \ldots, k, k \geq 1$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ_{1} is denoted by $\tau_{\tau_{1}}$, and a term with this occurrence of τ_{1} replaced by a term τ_{2} is denoted by $t_{\tau_{2}}$.

A term of the form $(\lambda x . t[x]) \tau$ is called a β-redex and the term $t[\tau]$ is called its convolution. The set of all term pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a β-redex and τ_{1} is its convolution, is called a notion of β-reduction and is denoted by β.

A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$) if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$.

A term containing no β-redexes is called a normal form. The set of all normal forms is denoted by $N F$ and the set of all closed normal forms is denoted by $N F^{0}$. A term t is said to have a normal form, if there exists a term τ such that $\tau \in N F$ and $t \rightarrow_{\beta} \tau$. From the Church-Rosser theorem [5] it follows, that if $t \rightarrow \rightarrow_{\beta} \tau_{1}, t \rightarrow_{\beta} \tau_{2}, \tau_{1}, \tau_{2} \in N F$, then $\tau_{1} \equiv \tau_{2}$.

If a term has a form $\lambda x_{1} \ldots x_{k} \cdot x t_{1} \ldots t_{n}$, where $x_{1}, \ldots, x_{k}, x \in V, t_{1}, \ldots, t_{n} \in \Lambda, k, n \geq 0$, it is called a head normal form and x is called its head variable. The set of all head normal forms is denoted by $H N F$. A term t is said to have a head normal form, if there exists a term τ such that $\tau \in H N F$ and $t \rightarrow_{\beta} \tau$. It is known that $N F \subset H N F$, but $H N F \not \subset N F$ (see [5]).

Let $\lambda x_{1} \ldots x_{k} \cdot((\lambda x . t) \tau) t_{1} \ldots t_{n}$ be a term, where $x_{1}, \ldots, x_{k}, x \in V, t_{1}, \ldots, t_{n}$, $\tau \in \Lambda, k, n \geq 0$, then the β-redex (λx.t) τ is called a head β-redex. Obviously, every head β-redex of the term is its left β-redex, but not every left β-redex of the term is its head redex. Recall that if a term has a head normal form, then the reducing chain, where always the head β-redex is chosen, leads to a head normal form and if a term has a normal form, then the reducing chain, where always the leftmost β-redex is chosen, leads to the normal form [5].

Lemma 3. [3]. Let t_{μ} be a term with a fixed occurrence of a term μ, which doesn't have a head normal form, and let v be any term, then:

1. $t_{\mu} \rightarrow_{\beta} \tau$, where $\tau \in N F \Rightarrow t_{v} \rightarrow_{\beta} \tau$;
2. t_{μ} has a head normal form $\Rightarrow t_{v}$ has a head normal form.

Translation. Let M be a recursive, partially ordered set, which has a least element \perp and every element of M is comparable with itself and with \perp. Every $m \in M$ is mapped to an untyped term in the following way:
if $m \in M \backslash\{\perp\}$, then $m^{\prime} \in N F^{0}$ and for any $m_{1}, m_{2} \in M \backslash\{\perp\}, m_{1} \neq m_{2} \Rightarrow m_{1}{ }^{\prime} \not \equiv m_{2}{ }^{\prime}$;
if $m \equiv \perp$, then $m^{\prime} \equiv \Omega \equiv(\lambda x . x x)(\lambda x . x x), x \in V$.
We say that a term $\Phi \lambda$-defines (see [2]) the function $f: M^{k} \rightarrow M, k \geq 1$, with indeterminate values of arguments, if for any $m_{1}, \ldots, m_{k} \in M$ we have:
$f\left(m_{1}, \ldots, m_{k}\right)=m \neq \perp \Rightarrow \Phi m_{1}{ }^{\prime} \ldots m_{k}{ }^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime} ;$
$f\left(m_{1}, \ldots, m_{k}\right)=\perp \Rightarrow \Phi m_{1}{ }^{\prime} \ldots m_{k}{ }^{\prime}$ doesn't have a head normal form.
We consider typed terms using functions from a recursive set C. Every $f \in C$ is a strong computable function with intermediate values of arguments, which has an untyped λ-term that λ-defines it. From [2] it follows that every $f \in C$ is a strong computable, monotonic function with indeterminate values of arguments. Thus, according to the Theorem 1, there exists a canonical notion of δ-reduction for the set C. Let us consider the algorithm of translation of any typed term t to untyped term t^{\prime} studied in [3]:
if $t \equiv m \in M$, then $t^{\prime} \equiv m^{\prime}$;
if $t \in C$, then $F V\left(t^{\prime}\right)=\emptyset$ and $t^{\prime} \lambda$-defines t;
if $t \equiv x \in V^{T}$, then $x^{\prime} \in V$ and for any $x_{1}, x_{2} \in V^{T}, x_{1} \not \equiv x_{2} \Rightarrow x_{1}{ }^{\prime} \not \equiv x_{2}{ }^{\prime}$;
if $t \equiv \tau\left(t_{1}, \ldots, t_{k}\right), k \geq 1$, then $t^{\prime} \equiv \tau^{\prime} t_{1}{ }^{\prime} \ldots t_{k}^{\prime}$;
if $t \equiv \lambda x_{1} \ldots x_{n}[\tau], n \geq 1$, then $t^{\prime} \equiv \lambda x_{1}{ }^{\prime} \ldots x_{n}{ }^{\prime} \cdot \tau^{\prime}$.
Lemma 4.|3]. $t, \tau \in \Lambda^{T}, t \rightarrow \rightarrow_{\beta} \tau \Rightarrow t^{\prime} \rightarrow_{\beta} \tau^{\prime}$.
Lemma 5. Let δ be a canonical notion of δ-reduction, then:

1. $t \in \beta-N F^{T}, t \rightarrow_{\delta} m, m \in M \backslash\{\perp\} \Rightarrow t^{\prime} \rightarrow_{\beta} m^{\prime}$,
2. $t \in \beta-N F^{T}, F V(t)=\emptyset, t \rightarrow_{\delta} \perp \Rightarrow t^{\prime}$ does not have a head normal form.

Proof.

1) Let $t \in \beta-N F^{T}, t \rightarrow \rightarrow_{\delta} m, m \in M \backslash\{\perp\}$. We have two cases: 1a) $F V(t)=\emptyset$, and 1b) $F V(t) \neq \emptyset$.

1a) Let $t \in \beta-N F^{T}, F V(t)=\emptyset, t \rightarrow_{\delta} m, m \in M \backslash\{\perp\}$. We will show that $t^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$. Let $t \rightarrow_{\delta} t_{1} \rightarrow_{\delta} \ldots \rightarrow_{\delta} t_{n} \equiv m, \quad$ where $t_{i} \in \beta-N F^{T}, \quad F V\left(t_{i}\right)=\emptyset$, $i=1, \ldots, n, n \geq 0$. If $n=0$, then $t \equiv m, t^{\prime} \equiv m^{\prime}$ and $t^{\prime} \rightarrow_{\beta} m^{\prime}$. Let $n>0$ and suppose that (1a) holds for $n-1$. Let $t \equiv t_{f\left(m_{1}, \ldots, m_{k}\right)} \rightarrow_{\delta} t_{m_{0}} \equiv t_{1}$, where $\left\langle f\left(m_{1}, \ldots, m_{k}\right), m_{0}\right\rangle \in \delta, m_{0}, m_{1}, \ldots, m_{k} \in M, k \geq 1$.

If $m_{0} \neq \perp$, then $f\left(m_{1}, \ldots, m_{k}\right)=m_{0} \Rightarrow f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m_{0}^{\prime}$ and $t^{\prime} \equiv t_{f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime}}^{\prime} \rightarrow \rightarrow_{\beta} t_{m_{0}^{\prime}}^{\prime} \equiv t_{1}^{\prime}$. Since $t_{1} \rightarrow_{\delta} \cdots \rightarrow_{\delta} t_{n} \equiv m$, by induction hypothesis we get $t_{1}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$. Therefore, $t^{\prime} \rightarrow_{\beta} m^{\prime}$.

If $m_{0}=\perp$, then $t_{1} \equiv t_{\perp}$ and $t_{1}^{\prime} \equiv t_{\Omega}^{\prime}$. Since $t_{1} \rightarrow_{\delta} \cdots \rightarrow_{\delta} t_{n} \equiv m$, by induction hypothesis we get, $t_{1}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$. Therefore according to the p. 1 of Lemma 3, $t^{\prime} \equiv t_{f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime}}^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$.

1b) Let $t \in \beta-N F^{T}, F V(t) \neq \emptyset, t \rightarrow_{\delta} m, m \in M \backslash\{\perp\}$. We will show that $t^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$. Let $F V(t)=\left\{x_{1}, \ldots, x_{s}\right\}, \quad x_{i} \in V_{\alpha_{i}}, \quad \alpha_{i} \in$ Types, $i=1, \ldots, s, s \geq 1$. Let $\Omega_{i} \in \Lambda_{\alpha_{i}}$ be a term that represents the least element of type α_{i} obtained by the operation of abstraction and term $\perp, i=1, \ldots, s$. One can show that Ω_{i}^{\prime} does not have a head normal form, $i=1, \ldots, s$. Since $t \equiv t\left[x_{1}, \ldots, x_{s}\right] \rightarrow_{\delta} m$, then according to [4] $t\left[x_{1}, \ldots, x_{s}\right] \sim m$, therefore, $t\left[\Omega_{1}, \ldots, \Omega_{s}\right] \sim m$ and according to the p. 1 of Theorem 2 we get $t\left[\Omega_{1}, \ldots, \Omega_{s}\right] \rightarrow \rightarrow_{\beta \delta} m$. According to [4] there exists a term $\tau \in \beta-N F^{T}, F V(\tau)=\emptyset$, such that $t\left[\Omega_{1}, \ldots, \Omega_{s}\right] \rightarrow_{\beta} \tau$ and $\tau \sim m$, then by Def. 1 (p.1), we conclude that $\tau \rightarrow_{\delta} m$. From Lemma 4 it follows that, $t^{\prime}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{s}^{\prime}\right] \rightarrow_{\beta} \tau^{\prime}$, by the case (1a) we get $\tau^{\prime} \rightarrow_{\beta} m^{\prime}$. So, $t^{\prime}\left[\Omega_{1}^{\prime}, \ldots, \Omega_{s}^{\prime}\right] \rightarrow_{\beta} m^{\prime}$ and, according to the p. 1 of Lemma $3, t^{\prime} \equiv t^{\prime}\left[x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right] \rightarrow_{\beta} m^{\prime}$.
2) Let $t \in \beta-N F^{T}, F V(t)=\emptyset, t \rightarrow_{\delta} \perp$. We will show that t^{\prime} does not have a head normal form. Let $t \rightarrow_{\delta} t_{1} \rightarrow_{\delta} \ldots \rightarrow_{\delta} t_{n} \equiv \perp, t_{i} \in \beta-N F^{T}, \quad F V\left(t_{i}\right)=\emptyset$, $i=1, \ldots, n, n \geq 0$. If $n=0$, then $t \equiv \perp, t^{\prime} \equiv \Omega$ and t^{\prime} does not have a head normal form. Let $n>0$ and suppose that (2) holds for $n-1$. Let $t \equiv t_{f\left(m_{1}, \ldots, m_{k}\right)} \rightarrow_{\delta} t_{m_{0}} \equiv t_{1}$, where $\left\langle f\left(m_{1}, \ldots, m_{k}\right), m_{0}\right\rangle \in \delta, m_{0}, m_{1}, \ldots, m_{k} \in M, k \geq 1$.

If $m_{0} \neq \perp$, then $f\left(m_{1}, \ldots, m_{k}\right)=m_{0} \Rightarrow f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m_{0}^{\prime}$, $t^{\prime} \equiv t_{f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime}}^{\prime} \rightarrow \rightarrow_{\beta} t_{m_{0}^{\prime}}^{\prime} \equiv t_{1}^{\prime}$. Since $t_{1} \rightarrow_{\delta} \cdots \rightarrow_{\delta} t_{n} \equiv \perp$, by the induction hypothesis t_{1}^{\prime} does not have a head normal form. Therefore, t^{\prime} does not have a head normal form too.

If $m_{0}=\perp$, then $t_{1} \equiv t_{\perp}$ and $t_{1}^{\prime} \equiv t_{\Omega}^{\prime}$. Since $t_{1} \rightarrow_{\delta} \cdots \rightarrow_{\delta} t_{n} \equiv \perp$, by induction hypothesis t_{1}^{\prime} does not have a head normal form. Since $f\left(m_{1}, \ldots, m_{k}\right)=\perp, f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime}$ does not have a head normal form. Therefore according to p . 2 of Lemma $3, t^{\prime} \equiv t_{f^{\prime} m_{1}^{\prime} \ldots m_{k}^{\prime}}^{\prime}$ does not have a head normal form too.

Now we give an example of canonical notion of δ-reduction and a term t such that $t \in \beta-N F^{T}, F V(t) \neq \emptyset, t \rightarrow_{\delta} \perp$ and term t^{\prime} has a head normal form. Let $M=N \cup\{\perp\}$, where $N=\{0,1,2, \ldots\}$ and suppose that $C=\{f\}$, where $f: M \rightarrow M$ satisfies $f(m)=\perp$ for any $m \in M$ and so $f \in[M \rightarrow M]$. Let $\delta=\left\{\langle f(\tau), \perp\rangle \mid \tau \in \Lambda_{M}^{T}\right\}$, it is easy to see that δ is the canonical notion of δ-reduction. Let $\perp^{\prime} \equiv \Omega, 0^{\prime} \equiv I,(n+1)^{\prime} \equiv \lambda x . x F n^{\prime}, f^{\prime} \equiv \lambda x . x \Omega$, where $\Omega \equiv(\lambda x . x x)(\lambda x . x x), I \equiv \lambda x . x, F \equiv \lambda x y . y, x, y \in V$. It is easy to see that the term $f^{\prime} \in \Lambda$ λ-defines the function f. Let $t \equiv f(z)$, where $z \in V_{M}^{T}$. It is easy to see that $f(z) \in \beta-N F^{T}, \quad F V(f(z))=\{z\} \neq \emptyset, \quad f(z) \rightarrow_{\delta} \perp$, therefore, $f(z) \rightarrow_{\delta} \perp$ and $t^{\prime} \equiv f^{\prime} z^{\prime} \equiv(\lambda x . x \Omega) z^{\prime} \rightarrow_{\beta} z^{\prime} \Omega$, where $z^{\prime} \in V$ and $z^{\prime} \Omega$ is a head normal form.

Theorem 3.On Translation. Let δ be a canonical notion of δ-reduction, then:

1. $t \in \Lambda_{M}^{T}, t \rightarrow \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\} \Rightarrow t^{\prime} \rightarrow_{\beta} m^{\prime}$;
2. $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \rightarrow \rightarrow_{\beta \delta} \perp \Rightarrow t^{\prime}$ does not have a head normal form.

Proof.

1) Let $t \in \Lambda_{M}^{T}, t \rightarrow \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\}$. According to [4], there exists a term $\tau \in \beta-N F^{T}$ such that $t \rightarrow_{\beta} \tau$ and $\tau \sim m$. From Lemma 4 it follows that $t^{\prime} \rightarrow_{\beta} \tau^{\prime}$. By Def. 1 (p. 1), $\tau \rightarrow_{\delta} m$, and, according to the p. 1 of Lemma 5, we get $\tau^{\prime} \rightarrow_{\beta} m^{\prime}$. Therefore $t^{\prime} \rightarrow \rightarrow_{\beta} m^{\prime}$.
2) Let $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, t \rightarrow \rightarrow_{\beta \delta} \perp$. According to [4], there exists a term $\tau \in \beta-N F^{T}, F V(\tau)=\emptyset$ such that $t \rightarrow_{\beta} \tau$ and $\tau \sim \perp$. According to Lemma 4, $t^{\prime} \rightarrow_{\beta} \tau^{\prime}$, by Def. 1 (p. 2), $\tau \rightarrow \rightarrow_{\delta} \perp$, p. 2 of Lemma 5 implies that τ^{\prime} does not have a head normal form. So, t^{\prime} does not have a head normal form too.

Received 18.10.2016

REFERENCES

1. Nigiyan S.A. Functional Programming Languages. // Programming and Computer Software, 1991, № 5, p. 77-86.
2. Nigiyan S.A. On Non-Classical Theory of Computability. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, № 1, p. 52-60.
3. Khondkaryan T.V. On Typed and Untyped Lambda-Terms. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, № 2, p. 45-52.
4. Budaghyan L.E. Formalizing the Notion of δ-Reduction in Monotonic Models of Typed λ-Calculus. // Algebra, Geometry \& Their Applications. Yer.: YSU Press, 2002, v. 1, p. 48-57.
5. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland Publishing Company, 1981.

[^0]: * E-mail: nigiyan@ysu.am
 **E-mail: tigrankhondkaryan@gmail.com

