PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, **51**(1), p. 38–41

Mathematics

DISCONTINUOUS RIEMANN BOUNDARY PROBLEM IN WEIGHTED SPACES

V. G. PETROSYAN *

Institute of Mathematics of NAS of the Republic of Armenia

The Riemann boundary problem in weighted spaces $L^1(\rho)$ on $T = \{t, |t| = 1\}$, where $\rho(t) = |t-t_0|^{\alpha}$, $t_0 \in T$ and $\alpha > -1$, is investigated. The problem is to find analytic functions $\Phi^+(z)$ and $\Phi^-(z)$, $\Phi^-(\infty) = 0$ defined on the interior and exterior domains of *T* respectively, such that: $\lim_{r \to 1-0} ||\Phi^+(rt) - a(t)\Phi^-(r^{-1}t) - f(t)||_{L^1(\rho)} = 0$, where $f \in L^1(\rho)$, $a(t) \in H_0(T; t_1, t_2, \dots, t_m)$. The article gives necessary and sufficient conditions for solvability of the problem and with explicit form of thr solutions.

MSC2010: 34M50.

Keywords: Riemann boundary problem, weighted spaces, Cauchy type integral, Holder classes.

Introduction. Let $T = \{t, |t| = 1\}$, $\rho(t) = |t - t_0|^{\alpha}$, where $t_0 \in T$ and $\alpha > -1$ is an arbitrary real number. Let denote by H(T) the Hölder class functions in T. We say that $a(t) \in H_0(T; t_1, t_2, ..., t_m)$, if a belongs to the Hölder class on any interval from Tnot including $t_k, k = 1, ..., n$, points and has jump discontinuity at those points. Denote $D^+ = \{z, |z| < 1\}$, $D^- = \{z, |z| > 1\}$, and let $D = D^+ \cup D^-$. We shall consider the case $t_0 \neq t_k, k = 1, ..., m$, and suppose that $a(t) \in H_0(T; t_1, t_2, ..., t_m), a(t) \neq 0, t \in T$. Introducing the function $\varphi(t) = \ln a(t)$, it is easy to get:

$$\alpha_k + i\beta_k = \frac{1}{2\pi i} (\varphi(t_k - 0) - \varphi(t_k + 0)), \ k = 1, \dots, m.$$

Obviously the function $S_1(z) = exp\left\{\frac{1}{2\pi i}\int_T \frac{\varphi(t)dt}{t-z}\right\}$, $z \in D$, on a small neighborhood of any point t_k , k = 1, ..., m, can be represented by $S_1(z) = (z - t_k)^{\alpha_k + i\beta_k} \Delta_k(z)$, where $\Delta_k(z)$ is an analytic function on D and $\lim_{z \to t_k} \Delta_k(z) = A \neq 0$. For the function $S_1(z)$ we will use following notation:

$$S_1(z) = \begin{cases} S_1^+(z), & z \in D^+, \\ S_1^-(z), & z \in D^-. \end{cases}$$

Let consider the following boundary problem. That is, find analytic $\Phi(z)$ function on *D* such that

$$\Phi^{+}(t) - \Phi^{-}(t) = 0,$$
(1)
(z) =
$$\begin{cases} \Phi^{+}(z), & z \in D^{+}, \\ \Phi^{-}(z), & z \in D^{-}. \end{cases}$$

where

There exist conformal mappings $\mu^+(z)$ and $\mu^-(z)$ ($\mu(\infty) = \infty$) from D^+ and $D^$ into some domains Δ_+ and Δ_- respectively such that they satisfy Lipschitz condition in $D^+ \cup T$ and $D^- \cup T$. Consider the functions

Φ

^{*} E-mail: vahee.petrosian@gmail.com

$$\Phi_1^+(z) = \prod_{k=1}^n (\mu^+(z) - \mu^+(t_k))^{\lambda_k}, \ z \in D^+; \ \Phi_1^-(z) = \prod_{k=1}^n (\mu^-(z) - \mu^-(t_k))^{\lambda_k}, \ z \in D^-,$$

where λ_k are integers such that $-1 < \lambda_k + \alpha_k \le 0, k = 1, \dots, m$.

Denoting

$$\Phi_1(z) = \begin{cases} \Phi_1^+(z), & z \in D^+, \\ \\ \Phi_1^-(z), & z \in D^-, \end{cases}$$

we can easily conclude that the function $\Phi_1(z)$ satisfies Eq. (1). Besides we have, $\Phi_1(z) = (z - t_k)^{\lambda_k} \Omega_k(z)$, where $\Omega_k(z)$ is analytic function in D and $\lim \Omega_k(z) = B \neq 0$.

Let $S(z) = S_1(z)\Phi_1(z), \quad z \in D^+ \cup D^-.$

L e m m a. For the function S(z) we have (see [1,2]):

a) $S^+(t) - a(t)S^-(t) = 0$; b) $S^+(t)$, $S^-(t) \in L^1(T)$ and $(S^+(t))^{-1}$, $(S^-(t))^{-1} \in L^{\infty}(T)$; c) on some neiborhood interval T_k of the point t_k the following is true:

$$S(z) = \frac{\lambda_k(z)}{(z - t_k)^{\delta_k - i\beta_k}}, \ z \in D \cap T_k,$$
(2)

where $\delta_k = -(\alpha_k + \lambda_k), 0 \le \delta_k < 1$ and $\lambda_k(z) = \Delta_k(z)\Omega_k(z)$. Obviously $\lambda_k(z) \to AB \neq 0$, as $z \rightarrow t_k$. Let

 $n = \begin{cases} [\alpha] + 1, & \text{if } \alpha \text{ is not integer,} \\ \alpha, & \text{if } \alpha \text{ is integer.} \end{cases}$ **Problem R.** Let $T = \{t, |t| = 1\}$ be the unit circl, $a(t) \in H_0(T; t_1, t_2, \dots, t_m)$ and $a(t) \neq 0, t \in T. \ \rho(t) = |t - t_0|^{\alpha}$ is the weight function, where $\alpha > -1$ is an arbitrary real number and $t_0 \in T$ such that $t_0 \neq t_k, k = 1, ..., m$. Besides the function f belongs to the classes $L^1(\rho)$ in T. Find an analytic function $\Phi(z)$, $\Phi(\infty) = 0$ on $D = D^+ \cup D^-$, where $D^+ = \{z, |z| < 1\}, D^- = \{z, |z| > 1\}$, satisfying the condition:

$$\lim_{r \to 1-0} \|\Phi^+(rt) - a(t)\Phi^-(r^{-1}t) - f(t)\|_{L^1(\rho)} = 0.$$
(3)

Similarly, we will consider Problem **R** without the condition $\Phi(\infty) = 0$. Instead we will suppose that the function Φ has some finite degree at infinity. Riemann boundary problem on weighted spaces for $a \in C^{\delta}$, $\delta \in (0,1]$, function was investigated in [3–5].

Main Results.

Theorem 1. Let $f \in L^1(\rho)$. If Φ is a solution of the Problem **R** and has some finite degree at infinity, then the following representation is true:

$$\Phi^{+}(z) = \frac{S^{+}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{g(t)dt}{(t-z)}, \ z \in D^{+},$$

$$\Phi^{-}(z) = \frac{S^{-}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{g(t)dt}{(t-z)} + S^{-}(z)P(z), \ z \in D^{-},$$
(4)

where P is some polynomial and $g(t) = (P(t) + f(t)/S^+(t))(t - t_0)^n$.

Proof. Let Φ be a solution of the Problem **R** and has finite degree at infinity. Let $f_r(t) \in H(T)$ be a sequence such that $\lim_{r \to 1-0} ||f_r(t) - f(t)||_{L^1(\rho)} = 0$. From Lemma we can easily get the following result:

$$\lim_{r \to 1-0} \left\| \left(\frac{\Phi^+(rt)}{S^+(t)} - \frac{\Phi^-(r^{-1}t)}{S^-(t)} - \frac{f_r(t)}{S^+(t)} \right) (t-t_0)^n \right\|_{L_1} = 0.$$
Let $\Psi_r(t) = \left(\frac{\Phi^+(rt)}{S^+(t)} - \frac{\Phi^-(r^{-1}t)}{S^-(t)} - \frac{f_r(t)}{S^+(t)} \right) (t-t_0)^n$ and
$$F_r^+(z) = \frac{\Phi^+(rz)(z-t_0)^n}{S^+(z)}, \ z \in D^+, \ F_r^-(z) = \frac{\Phi^-(r^{-1}z)(z-t_0)^n}{S^-(z)}, \ z \in D^-.$$
(5)

We have $F_r^+(t) - F_r^-(t) = \Psi_r(t) + \frac{f_r(t)(t-t_0)^n}{S^+(t)}$, where $t \in T, 0 < r < 1$, $\Psi_r(t) \in H_0(T)$ and $\lim_{r \to 1-0} ||\Psi_r(t)||_{L^1} = 0$. Taking into account that the functions $F_r^+(z)$ and $F_r^-(z)$ are bounded on D^+ and D^- respectively, we conclude:

$$\begin{cases} F_r^+(z) = \frac{1}{2\pi i} \int_T \frac{g_r(t)dt}{t-z}, \\ F_r^-(z) = \frac{1}{2\pi i} \int_T \frac{g_r(t)dt}{t-z} + P_r(z), \end{cases}$$
(6)

where $P_r(z)$ is the principal part of the Laurent expansion of the function F_r^- at infinity and

$$g_r(t) = \Psi_r(t) + \left(P_r(t) + \frac{f_r(t)}{S^+(t)}\right)(t - t_0)^n.$$

We have $\lim_{r \to 1-0} F_r^+(z) = \frac{\Phi^+(z)(z-t_0)^n}{S^+(z)}, \quad \lim_{r \to 1-0} F_r^-(z) = \frac{\Phi^-(z)(z-t_0)^n}{S^-(z)}.$ Besides, P_r uniformly converges to the polynomial P if $r \to 1-0$, as

$$\lim_{r \to 1-0} \left\| \left(\Psi(rt) + \frac{f_r(t)}{S^+(t)} - P(t) - \frac{f(t)}{S^+(t)} \right) (t - t_0)^n \right\|_{L_1} = 0,$$

we get $\lim_{r \to 1-0} ||g_r(t) - g(t)||_{L_1} = 0$. Taking into account (7), Theorem 1 is proved.

Theorem 2. Let $f \in L^1(\rho)$. Then the general solution of the Problem **R** with a finite degree at infinity is given by the following formula:

$$\Phi^{+}(z) = \frac{S^{+}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{g(t)dt}{(t-z)}, \ z \in D^{+},$$

$$\Phi^{-}(z) = \frac{S^{-}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{g(t)dt}{(t-z)} + S^{-}(z)P(z), \ z \in D^{-},$$
(7)

where *P* is any polynomial and $g(t) = \left(P(t) + \frac{f(t)}{S^+(t)}\right)(t-t_0)^n$.

Proof. We showed in Theorem 1, that any solution of the Problem **R** having finite degree at infinity has the representation (7). Now we will prove that any function, which has the representation (7) is a solution of the Problem **R**.

Let $f_n(t) \in H(T)$ and $\lim_{n \to \infty} ||f_n(t) - f(t)||_{L^1(\rho)} = 0$. Denote,

$$g_n(t) = \left(P(t) + \frac{f_n(t)}{S^+(t)}\right)(t - t_0)^t$$

Suppose

$$\Phi_n^+(z) = \frac{S^+(z)}{2\pi i (z-t_0)^n} \int_T \frac{g_n(t)dt}{(t-z)}, \ z \in D^+,$$

$$\Phi_n^-(z) = \frac{S^-(z)}{2\pi i (z-t_0)^n} \int_T \frac{g_n(t)dt}{(t-z)} + S^-(z)P(z), \ z \in D^-.$$
(8)

Since the functions $\Phi_n^+(z)$ and $\Phi_n^-(z)$ satisfy the Riemann boundary problem, we have $\Phi_n^+(t) - a(t)\Phi_n^-(t) = f_n(t)$ on *T*. Moreover, they have degree $-\delta$, $\delta \in (0, 1)$ on some small neighborhood of the points t_k , so there exists a real number p, p > 1 such that for every r, $r \in (0, 1)$ the following is true:

$$\int_{T} |\Phi_{n}^{+}(rt)|^{p} \rho(t)|dt| < C, \quad \int_{T} |\Phi_{n}^{+}(r^{-1}t)|^{p} \rho(t)|dt| < C.$$

Taking into account the last result, for every $n, n \ge 1$, we will have

$$\lim_{r \to 1-0} \|\Phi_n^+(rt) - a(t)\Phi_n^-(r^{-1}t) - f_n(t)\|_{L_1(\rho)} = \lim_{r \to 1-0} \|I_n^1(r)\|_{L_1(\rho)} = 0.$$

Denoting $\varepsilon_n(t) = g_n(t) - g(t)$, we will have $\int_T |\Phi^+(rt) - a(t)\Phi^-(r^{-1}t) - f(t)|\rho(t)|dt| \leq C \left(\int_T \frac{(1-r)|S^+(rt)|}{|t_0 - rt|^n|} \int_T \frac{|\varepsilon_n(\tau)|}{|\tau - rt|^2} |d\tau|\rho(t)|dt| + \int_T \frac{(1-r)|S^+(rt)|}{|t_0 - rt|^{n+1}} \int_T \frac{|\varepsilon_n(\tau)|}{|\tau - r^{-1}t|} |d\tau|\rho(t)|dt| + \int_T \frac{|S^+(rt) - a(t)S^-(r^{-1}t)|}{|t_0 - r^{-1}t|^n|} \int_T \frac{|\varepsilon_n(\tau)|}{|\tau - r^{-1}t|} |d\tau|\rho(t)|dt| \right) + \|I_n^1(r)\|_{L_1(\rho)} + \|f_n - f\|_{L_1(\rho)}.$ All summands at the right side of the inequality tend to zero as $r \to 1 - 0.12$ Al

All summands at the right side of the inequality tend to zero as $r \rightarrow 1-0$ [3,4]. \Box Solution of the Problem. Let introduce the following functions:

 $\Phi_k^+(z) = \frac{1}{2\pi i} \int_T \frac{t^k (t-t_0)^n}{(t-z)} dt, \ z \in D^+, \quad \Phi_k^-(z) = \frac{1}{2\pi i} \int_T \frac{t^k (t-t_0)^n}{(t-z)} dt + z^k, \ z \in D^-. \text{ Then,}$ $\tilde{g}(t) = f(t)(t-t_0)^n (S^+(t))^{-1}. \text{ Hence, for any polynomial } P(z) = c_0 + +c_1 z + \dots + c_m z^m$ Eq. (7) can be represented as follows:

$$\Phi^{+}(z) = \frac{S^{+}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{\tilde{g}(t)dt}{(t-z)} + \frac{S^{+}(z)}{(z-t_{0})^{n}} \sum_{k=0}^{m} c_{k} \Phi^{+}_{k}(z), \ z \in D^{+},$$

$$\Phi^{-}(z) = \frac{S^{-}(z)}{2\pi i (z-t_{0})^{n}} \int_{T} \frac{\tilde{g}(t)dt}{(t-z)} + \frac{S^{-}(z)}{(z-t_{0})^{n}} \sum_{k=0}^{m} c_{k} \Phi^{-}_{k}(z), \ z \in D^{-}.$$
(9)

Let $\kappa = -\sum_{k=1} \lambda_k$. Obviously the function *S* has κ degree at infinity. We say that κ is the index of function *a*.

Theorem 3. Let $f \in L^1(\rho)$. Then the general solution of the Problem **R** regarding to κ has the following representation:

a) if $n + \kappa \ge 0$, then

$$\Phi^{+}(z) = \frac{S^{+}(z)}{2\pi i (z-t_0)^n} \int_{T} \frac{\tilde{g}(t)dt}{(t-z)} + \frac{S^{+}(z)}{(z-t_0)^n} \sum_{k=0}^{\kappa-1} c_k \Phi_k^{+}(z), \ z \in D^+,$$

$$\Phi^{-}(z) = \frac{S^{-}(z)}{2\pi i (z-t_0)^n} \int_{T} \frac{\tilde{g}(t)dt}{(t-z)} + \frac{S^{-}(z)}{(z-t_0)^n} \sum_{k=0}^{\kappa-1} c_k \Phi_k^{-}(z), \ z \in D^-,$$
(10)

where $c_0, c_1, \ldots, c_{\kappa-1}$ are arbitrary complex numbers when $\kappa \ge 1$ and $c_0 = c_1 = \ldots = c_{\kappa-1}$ when $\kappa = 0$.

b) if $n + \kappa < 0$, then the problem has a solution if and only if:

$$\int_{T} \frac{g(t)}{(t-z)} t^{k} dt = 0, \ k = 0, 1, \dots, -(n+\kappa) - 1.$$
(11)

Moreover, solution has the representation (11), where $c_0 = c_1 = \ldots = c_{\kappa-1}$.

This work was supported by the SCS of MES of RA in the frame of project N° 16A-1a54.

Received 27.12.2016

REFERENCES

- 1. Muskhelishvili N.I. Singular Integral Equations. Groningen: Noordhoff, 1963.
- 2. Gakhov F.D. Boundary Value Problems. NY: Dover, 1990.
- 3. Hayrapetyan H.M. Discontinuous Riemann–Privalov Problem with Shift in L¹. // Izv. Akad. Nauk Arm. SSR. Matematika, 1990, v. 25, p. 18 (in Russian).
- Hayrapetyan H.M., Petrosyan V.G. Riemann Boundary Problem in Weighted Spaces L¹(ρ). // Journal of Contemporary Mathematical Analysis, 2016, v. 51, № 5, p. 249–261.
- Kazarian K.S. Weighted Norm Inequalities for some Classes of Singular Integrals. // Studia Math., 1987, v. 86, p. 97–130.