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We prove embedding theorems for multianisotropic spaces in the case when the
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Introduction. The history of embedding theorems begins with the works of
S.L. Sobolev (see [1, 2]) and later these results for anisotropic spaces were continued by
different mathematicians. In the papers [3–9] one can find the history of the problem and
different results. This paper is a continuation of [10–12], where we proved embedding
theorems for multianisotropyc spaces for the characteristic polyhedron having one vertex
of anisotropicity. Below we study same problem for the polyhedron with two anisotropicity
vertices. The difficulty of the study of two vertices case is the selection of a “dominant” facet,
which is done in the work.

Multianisotropic Exponents and Their Properties. Let Rn be n-dimensional space,
Zn
+ the set of all multi-indices. For ξ ,η ∈ Rn, α ∈ Zn

+, t > 0 let |α| = α1 + · · ·+ αn,

ξ α = ξ
α1
1 . . .ξ αn

n , tη = (tη1 , . . . , tηn), Dk =
1
i
· ∂

∂xk
(k = 1, . . . ,n), Dα = Dα1

1 . . .Dαn
n be

the weak derivative. Let N be the completely regular polyhedron (f.e., see [10]) with
vertices l0 = (0,0, . . . ,0), l1 = (l1,0, . . . ,0), l2 = (0, l2,0, . . . ,0), . . . , ln = (0,0, . . . ,0, ln),
α = (α1,α2, . . . ,αn) and β = (β1,β2, . . . ,βn) such that α and β have only positive coordi-
nates. Below we denote these vertices by {α1,α2, . . . ,αn+2}. Let µ i (i = 1, . . . ,2n− 1) be
the outer normal of the (n−1)-dimensional non-coordinate face Nn−1

i (i= 1, . . . ,2n−1) such
that the equation of the (n− 1)-dimensional hyperplane, containing this face is (α,µ i) = 1
(i = 1, . . . ,2n−1). For a parameter ν > 0 and a natural number k denote

P(ν ,ξ ) =
n+2

∑
i=1

(
νξ

α i
)2k

, (1)

G0(ν ,ξ ) = e−P(ν ,ξ ), (2)

G1, j(ν ,ξ ) = 2k
(

νξ
α j
)2k−1

e−P(ν ,ξ ), j = 1, . . . ,n+2, (3)
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and let Ĝ0(t,ν), Ĝ1, j(t,ν) ( j = 1, . . . ,n+2) be the corresponding Fourier transforms of these
functions. It is obvious that G0,G1, j, Ĝ0, Ĝ1, j ∈ S, where S = S(Rn) is the Schwartz space of
functions infinitely differentiable and rapidly decreasing at infinity.

For any multi-index m = (m1, . . . ,mn) we denote

I = I(ν) =
∫
Rn

ξ
m1
1 . . .ξ mn

n e−P(ν ,ξ )dξ1 . . .dξn (4)

and study the behavior of the function I(ν) depending on ν : 0 < ν < 1.
L e m m a 1. For any multi-index m = (m1, . . . ,mn) there exist constants C0, . . . ,Cn,

such that for any ν : 0 < ν < 1 the following inequality holds:

|I(ν)| ≤ (Cn| lnν |n + · · ·+C1| lnν |+C0)ν
− max

1≤i≤2n−1
|µ i|

. (5)

P r o o f . First we prove Lemma 1 for n = 3.
Consider the ratios

αi

mi +1
(i = 1,2,3) and denote by i0 one of the indices, for which

the ratio is maximal, i.e. max
i=1,2,3

αi

mi +1
=

αi0
mi0 +1

. Let i0 = 3 and all other rations are less than

α3

m3 +1
. Consider the facet passing through the vertices (l1,0,0), (0, l2,0), α = (α1,α2,α3).

Let this face has the outer normal µ4. Substituting in Eq. (5) ξ = ν−µ4
η , we obtain

|I(ν)| ≤Cν
−(|µ4|+(m,µ4))

∫
∞

0
e
−

(
η

α1
α3

1 η

α2
α3

2 η3

)2kα3(
η

α1
α3

1 η

α2
α3

2 η3

)m3

d
(

η

α1
α3

1 η

α2
α3

2 η3

)
×

×
∫

∞

0
η

m1−
α1
α3

m3−
α1
α3

1 e−η
2kl1
1 dη1

∫
∞

0
η

m2−
α2
α3

m3−
α2
α3

2 e−η
2kl2
2 dη2 ≤Cν

− max
i=1,...,5

(|µ i|+(m,µ i))
.

The last relation follows from the convergence of three integrals and from the inequa-
lities m1−

α1

α3
m3−

α1

α3
>−1, m2−

α2

α3
m3−

α2

α3
>−1. The cases

α1

m1 +1
<

α2

m2 +1
=

α3

m3 +1
and

α1

m1 +1
=

α2

m2 +1
=

α3

m3 +1
are studied, in the same way as in [3] were done.

Suppose i0 6= 3 and consider similar rations for the other vertex of anisotropicity.
Let j0 be one of the indices, for which the ratio is maximal, i.e.

max
j=1,2,3

β j

m j +1
=

β j0
m j0 +1

. Now for j0 = 2 consider the facet passing through the vertices

(l1,0,0), β = (β1,β2,β3), (0,0, l3) with the outer normal µ2. For j0 = 1 we consider the
facet with the vertices β = (β1,β2,β3), (0, l2,0), (0,0, l3) and with the outer normal µ1.
Then the substitutions ξ = ν−µ2

η or ξ = ν−µ1
η in (5) respectively yeild the same result

with a slight change of the form of the integral (for example, l3 instead of l2 or α instead of
β and etc.).

The only cases we need to consider are:

a) max
i=1,2,3

αi

mi +1
=

α2

m2 +1
and max

j=1,2,3

β j

m j +1
=

β3

m3 +1
;

b) max
i=1,2,3

αi

mi +1
=

α1

m1 +1
and max

j=1,2,3

β j

m j +1
=

β3

m3 +1
.

We only study a), since it is symmetric to b).
At first we consider the case, when the maximum is unique (the equality in these

relations is discussed later), i.e.
α1

α2
<

m1 +1
m2 +1

,
α3

α2
<

m3 +1
m2 +1

,
β1

β3
<

m1 +1
m3 +1

,
β2

β3
<

m2 +1
m3 +1

. (6)
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Substituting ξ = ν−µ4
η in Eq. (5), we obtain

|I(ν)| ≤Cν
−(|µ4|+(m,µ4))

∫∫∫
R3
+

η
m1−

α1
α2
− β1

β3
1 η

m2−
β2
β3

2 η
m3−

α3
α2

3 ×

×e
−η

2kl1
1 −

(
η

α1
α2

1 η2η

α3
α2

3

)2kα2

−

η

β1
β3

1 η

β2
β3

2 η3

2kβ3

dη1 d
(

η

α1
α2

1 η2η

α3
α2

3

)
d

(
η

β1
β3

1 η

β2
β3

2 η3

)
.

Let K,M,L be numbers satisfying the relation

η
K
1

(
η

α1
α2

1 η2η

α3
α2

3

)M
(

η

β1
β3

1 η

β2
β3

2 η3

)L

= η
m1−

α1
α2
− β1

β3
1 η

m2−
β2
β3

2 η
m3−

α3
α2

3 .

By equating the corresponding exponents of ηi (i = 1,2,3), we get a system of linear
equations with respect to the unknowns K,M,L. If we denote x = K + 1, y = M + 1 and
z = L+1, then the equations take the following form:

x+
α1

α2
y+

β1

β3
z = m1 +1,

y+
β2

β3
z = m2 +1,

α3

α2
y+ z = m3 +1.

(7)

By substituting ξ = ν−µ3
η and applying similar steps, we get the following system

of linear equations: 
x+ +

β1

β3
z = m1 +1,

α2

α1
x+ y+

β2

β3
z = m2 +1,

α3

α1
x+ +z = m3 +1.

(8)

So we need to show that either one of Eqs. (7) and (8) has a non-negative solution in
order to ensure that K,M,L≥−1.

Using the conditions (6), it is easy to check that y and z are positive in Eq. (7).
Consider x. By Cramer’s rule and the corresponding substitution, we have

x =

∣∣∣∣∣∣
m1 +1 α1/α2 β1/β3
m2 +1 1 β2/β3
m3 +1 α3/α2 1

∣∣∣∣∣∣
1− (α3/α2) · (β2/β3)

=

∣∣∣∣∣∣
m1 +1 m2 +1 m3 +1

α1 α2 α3
β1 β2 β3

∣∣∣∣∣∣
α2β3−α3β2

=
∆

α2β3−α3β2
.

Note that, due to conditions (6), we have α2β3−α3β2 > 0, so x and ∆ have the same
sign. Let ∆1, ∆2 and ∆3 be the corresponding cofactors of Laplace expansion of the determi-
nant ∆ along the first row, i.e. ∆1 = α2β3−α3β2, ∆2 = α3β1−α1β3 and ∆3 = α1β2−α2β1.
Thus, ∆ = (m1 + 1)∆1 +(m2 + 1)∆2 +(m3 + 1)∆3. Since the conditions (6) hold, we have
∆1 > 0. Notice that α1∆1 +α2∆2 +α3∆3 = β1∆1 +β2∆2 +β3∆3 = 0 and each ∆i cannot be
positive. Consider the following cases:

1. ∆3 ≥ 0.

By (6) we have m1 + 1 >
m2 +1

α2
α1 and m3 + 1 >

m2 +1
α2

α3. Applying these

inequalities to the expansion, we obtain

∆ = (m1 +1)∆1 +(m2 +1)∆2 +(m3 +1)∆3 >
m2 +1

α2
(∆1α1 +∆2α2 +∆3α3) = 0.
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2. ∆3 < 0 and ∆2 ≥ 0.
As in the previous case, from Eq. (6) we obtain ∆ > 0.
3. ∆3 < 0 and ∆2 < 0.

Consider
α1

α3
and

β1

β2
. By (4) we also have m2 + 1 <

m1 +1
α1

α2, m3 + 1 <
m1 +1

β1
β3.

Suppose that either
α1

α3
≤ m1 +1

m3 +1
or

β1

β2
≤ m1 +1

m2 +1
holds. Then either m3 +1≤ m1 +1

α1
α3 or

m2 +1≤ m1 +1
β1

β2. The both cases can be proceed analogously to the cases 1 and 2.

It remains to consider the case when
α3

α1
<

m3 +1
m1 +1

,
β2

β1
<

m2 +1
m1 +1

, ∆2 < 0 and ∆3 < 0,

where in the case ∆ < 0 consider (8), where x and z are positive. For y we have:

y =

∣∣∣∣∣∣
1 m1 +1 β1/β3

α2/α1 m2 +1 β2/β3
α3/α1 m3 +1 1

∣∣∣∣∣∣
1− (α3/α1) · (β1/β3)

=

∣∣∣∣∣∣
α1 α2 α3

m1 +1 m2 +1 m3 +1
β1 β2 β3

∣∣∣∣∣∣
α2β1−α1β2

=
∆

∆2
.

Hence, in this case the signs since of y in Eq. (8) and x in Eq. (7) are of different.
Thus, if ∆ > 0, then the solution of (7) is positive. If ∆ < 0, then the solution of (8) is positive.
If ∆ = 0, then the solutions of each equations are non-negative. We split the integral into four
parts and estimate each one separately. Let µ0

i = min
1≤ j≤5

µ
j

i (i = 1,2), then we have

|I(ν)| ≤
∫

ν
−µ0

1

0
dξ1

∫
ν
−µ0

2

0
dξ2

∫
∞

0
. . . dξ3 +

∫ 0

ν
−µ0

1
dξ1

∫
ν
−µ0

2

0
dξ2

∫
∞

0
. . . dξ3

+
∫

ν
−µ0

1

0
dξ1

∫ 0

ν
−µ0

2
dξ2

∫
∞

0
. . . dξ3 +

∫
ν
−µ0

1

0
dξ1

∫
ν
−µ0

2

0
dξ2

∫
∞

0
. . . dξ3

= I1 + I2 + I3 + I4.

By substituting ξ = ν−µ1
η in I1, we get

I1 ≤Cν
−(|µ1|+(m,µ1))

∫ 1

0
dη1

∫ 1

0
dη2

∫
∞

0
η

me−η
2kl2
2 −η

2kl3
3 −η2kβ

dη3

≤Cν
−(|µ1|+(m,µ1))

∫
∞

0
η

m3
3 e−η

2kl3
3 dη3 ≤Cν

−(|µ1|+(m,µ1)).

Since the last integral is non-negative, then 0 ≤ η1 ≤ νµ1
1−µ0

1 ≤ 1 and 0 ≤ η2 ≤ νµ1
2−µ0

2 ≤ 1
if 0≤ ξ1 ≤ ν−µ0

1 and 0≤ ξ2 ≤ ν−µ0
2 .

Similarly, one can estimate I2, I3 and I4, considering the solutions of (8) and (7) with
the corresponding substitutions ξ = ν−µ2

η , ξ = ν−µ3
η and ξ = ν−µ2

η .
As a result in this case we obtain

|I(ν)| ≤ (C1 lnν +C2)ν
− max

i=1,...,5
(|µ i|+(m,µ i))

.

Now we return to the case of equality in Eq. (6) there is an equal sign. If
α1

α2
=

m1 +1
m2 +1

and
α3

α2
<

m3 +1
m2 +1

, then the solution of (7) is non-negative and the integral can be estimated

as in the case ∆ = 0. If
α1

α2
<

m1 +1
m2 +1

and
α3

α2
=

m3 +1
m2 +1

, then
α1

α3
<

m1 +1
m3 +1

. This case has

already been discussed. If
β1

β3
=

m1 +1
m3 +1

and
β2

β3
<

m2 +1
m3 +1

, then
β2

β1
<

m2 +1
m1 +1

. This case is
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handled in the same way as j0 = 1. If
β1

β3
<

m1 +1
m3 +1

and
β2

β3
<

m2 +1
m3 +1

, then
β1

β2
<

m1 +1
m2 +1

,

so we can apply the case j0 = 2.
Now we prove the Lemma 1 for any n.
We cut the completely regular polyhedron N with the hyperplane (l1, l2, . . . , ln−1,α).

Now we consider the polyhedron M with vertices (l1, . . . , ln,α), which has one anisotropicity
vertex α . Now, if for some i (i = 1, . . . ,n) we apply the substitution ξ = ν−µ i

η to (5), we
obtain

|I(ν)| ≤Cν
−(|µ i|+(m,µ i))×

×
∫
Rn

e
−η

2kl1
1 −···−

(
η

α1
αi

1 ...η

αi−1
αi

i−1 ηi η

αi+1
αi

i+1 ...η

αn
αi

n

)2kαi

−···−η
2kln
n

η
m1−

α1
αi

1 . . .η
mi−1−

αi−1
αi

i−1 η
mi
i ×

×η
mi+1−

αi+1
αi

i+1 . . .η
mn− αn

αi
n dη1 . . .d

(
η

α1
αi

1 . . .η

αi−1
αi

i−1 ηi η

αi+1
αi

i+1 . . .η
αn
αi

n

)
. . .dηn.

Let k1,k2, . . . ,kn be numbers satisfying the following relation:

η
k1
1 . . .

(
η

α1
αi

1 . . . η

αi−1
αi

i−1 ηi η

αi+1
αi

i+1 . . . η

αn
αi

n

)ki

. . . η
kn
n

= η
m1−

α1
αi

1 . . . η
mi−1−

αi−1
αi

i−1 η
mi
i η

mi+1−
αi+1

αi
i+1 . . . η

mn− αn
αi

n .

By equating the corresponding exponents of ηi (i = 1, . . . ,n), we get a system
of linear equations with respect to the unknowns k1,k2, . . . ,kn. Denote x1 = k1 + 1,
x2 = k2 +1, . . . , xn = kn +1. Then the equation takes the following form:

x1 + +α1/αixi = m1 +1
x2 + +α2/αixi = m2 +1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi = mi +1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αn/αixi + +xn = mn +1.

(9)

If a polyhedron M has one vertex of anisotropicity α , than as it is shown in [12], there
is a facet with the outer normal µ i0 such that the system of linear Eqs. (9) has a non-negative
solution after the substitution ξ = ν−µ

i0
η . Suppose after the substitution ξ = ν−µ

i0
η , the

system (9) has a non-negative solution. If in the obtained polyhedron M the sought-for facet
corresponding to the substitution i0 is not the facet (l1, l2, . . . , ln−1,α), then, since this facet
is as well a facet of the polyhedron N, the problem of finding the sought-for facet is resolved.
If the sought-for facet is (l1, l2, . . . , ln−1,α), which is not a facet of the polyhedron N, then
we consider the following n pieces (n−1)-dimensional facets of the polyhedron N, passing
through the vertices {l1, l2, . . . , ln−1,β}, {l1, l2, . . . , ln−2,β ,α}, {l1, l2, . . . , ln−3,β , ln−1,α},
. . . , {l1,β , l3, . . . , ln−1,α}, {β , l2, . . . , ln−1,α}. Then we prove, that at least for one of them
one of the following n systems of linear equations has a non-negative solution:

x1 + +β1/βixi + +α1/αnxn = m1 +1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi + +αi/αnxn = mi +1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βn/βixi + + xn = mn +1.

(10)
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Not that for i = 1, . . . ,n the variables with coefficients of the form
αi

αn
(i = 1, . . . ,n) are zeros

in (10).
Suppose S = {α1,α2, . . . ,αn+2} ⊂ Rn and denote

cone(S) =

{
n+2

∑
i=1

ci α
i | n≥−1,α i ∈ S,ci ∈ R,ci ≥ 0

}
.

For S0 = {l1, l2, . . . , ln−1,α} ⊆ Rn we denote

∆0 = ∆(l1, l2, . . . , ln−1,α) =

∣∣∣∣∣∣∣∣∣
1 0 · · · 0 α1/αn
...

...
. . .

...
...

0 0 · · · 1 αn−1/αn
0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣= 1 6= 0.

Let β ∈ Rn.
For Si = (S0 \{li})

⋃
{β} (i = 1, . . . ,n−1), Sn = (S0 \{α})

⋃
{β} we have

∆i = ∆(l1, . . . , li−1,β , li+1, . . . , ln−1,α) =

∣∣∣∣ 1 αi/αn
βn/βi 1

∣∣∣∣= 1− αi

αn
· βn

βi
(i = 1, . . .n−1),

∆n = ∆(l1, . . . , ln−1,β ) =

∣∣∣∣∣∣∣∣∣
1 0 · · · 0 β1/βn
...

...
. . .

...
...

0 0 · · · 1 βn−1/βn
0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣= 1 6= 0.

Denote I = {1,2, . . . ,n−1}. Let I = I1
⋃

I2, where I1 is the set of indices i, for which
the signs of ∆i and ∆0 coincide and I2 = I \ I1.

First we prove that ∆i and ∆0 have the same sign for some i ∈ I. The equation of the
hyper-plane that cut N is ∆p(x) =∆(x− l1, l2− l1, . . . , ln−1− l1,α− l1). Denote by β the point
that was left out of N after the cut. Then it is obvious that β and 0 lie in different halfspaces,
i.e. ∆p(0) ·∆p(β )< 0. Notice that −∆p(0) = ∆0 and, thus, ∆p(β ) and ∆0 have the same sign.

Using the properties of the determinant, it is easy to show that
n

∑
i=1

∆i = ∆p(β )−∆p(0) =

∆p(β )+∆0. Then since ∆0 and ∆p(β ) have the same sign, their sum also has the same sign.

Thus
n

∑
i=1

∆i has the same sign as ∆0. So at least one of ∆i has the same sign, as ∆0.

So at least one of the systems of linear Eqs. (10) has a non-negative solution. Let
m+1 ∈ cone(S0), then there is a vector m0 = (m0,1, . . . ,m0,n) with non-negative coefficients

such that m+ 1 =
n−1

∑
j=1

m0, jl j +m0,nα . Consider the system of linear Eqs. (10), for which

i ∈ I1. Let xi be the solution to the i-th equation. Then by Cramer’s Rule, using the properties
of the determinant for j < i, we get

xi, j = ∆(l1, l2, . . . , l j−1,m+1, l j+1, . . . , li−1,β , li+1, . . . , ln−1,α)

= m0,1∆(l1, l2, . . . , l j−1, l1, l j+1, . . . , li−1,β , li+1, . . . , ln−1,α)

+ · · ·+m0, j∆(l1, l2, . . . , l j−1, l j, l j+1, . . . , li−1,β , li+1, . . . , ln−1,α)

+ · · ·+m0,i∆(l1, l2, . . . , l j−1, li, l j+1, . . . , li−1,β , li+1, . . . , ln−1
α)

+ · · ·+m0,n∆(l1, l2, . . . , l j−1,α, l j+1, . . . , li−1,β , li+1, . . . , ln−1,α) = m0, j +m0,i
∆ j

∆i
.

For j > i, the i-th and j-th rows are switched yielding the same result as for j < i.
Using the properties of the determinant for i = j, we obtain



Karapetyan G. A., Petrosyan H. A. Embedding Theorems for Multianisotropic Spaces... 35

xi,i =∆(l1, l2, ..., li−1,m+1, li+1, ..., ln−1,α)=m0,1∆(l1, l2, ..., li−1, l1, li+1, ..., ln−1,α)+· · ·+

+m0,i∆(l1, l2, ..., li−1, li, li+1, ..., ln−1,α)+ · · ·+m0,n∆(l1, l2, ..., li−1,α, li+1, ..., ln−1,α)

= m0,i
∆0

∆i
.

Note that
∆0

∆i
> 0 for i ∈ I1 and

∆ j

∆i
≤ 0 for i ∈ I1 and j ∈ I2, since the signs of

∆ j and ∆i do not coincide and the signs of ∆0 and ∆i coincide and are non-zero. Thus we
have m0, j ≥ 0, xi,i ≥ 0 and xi, j ≥ 0 for any i ∈ I1 and j ∈ I2.

Now, we express xi, j, where i 6= j ∈ I1, in terms of xi,i and x j, j as follows:

xi, j = m0, j−m0,i
∆ j

∆i
=

∆ j

∆0

(
m0, j

∆0

∆ j
−m0,i

∆0

∆i

)
=

∆ j

∆0
(x j, j− xi,i).

Let k be such that xk,k = min
i∈I1

xi,i. We claim, that the vector xk is non-negative and we

only need to show that xk, j ≥ 0, k 6= j ∈ I1. Due to the choice of k we have x j, j− xk,k ≥ 0 for

j ∈ I1 and
∆ j

∆0
> 0 and so xk, j =

∆ j

∆0

(
x j, j− xk,k

)
≥ 0.

For i = n the system (10) also has a non-negative solution, since xi, j = m0, j ≥ 0,
j = 1, . . . ,n.

Thus, we showed that at least one of the system of linear Eqs. (10) has a non-negative
solution. �

C o r o l l a r y . It follows from the proof of Le‘mma 1, that the power of logarithm in
the inequality depends on the zeros of the system (10), i.e. instead of n in (5) we can take the
maximum number of zeros of the system (10). In particular, if the system (10) has no zeros,
then the constants C1, . . . ,Cn can be taken to be zeros.

Multianisotropic Kernels and Their Properties. Consider the multianisotropic
kernels (3), denoting

Ĝ1, j(t,ν) =
1

(2π)
n
2

∫
Rn

e−i(t,ξ )(2k)
(

νξ
α j
)2k−1

e−P(ν ,ξ ) dξ .

We study the properties of Ĝ0, Ĝ1, j ∈ S.
Let µ i (i = 1, . . . ,n) be the outer normal of the (n− 1)-dimensional face, which is

passing through the vertices {α1,α2, . . . ,α i−1,α i+1, . . . ,αn,σ}, where σ is or αn+1, or αn+2.
Denote by γ = (γ1, . . . ,γn) the point of intersection of the hyper-plane with the outer normals
µ1, . . . ,µn. Suppose the relation γ1 < γ2 < · · ·< γn−r ≤ γn−r+1 ≤ ·· · ≤ γn (r = 0,1, . . . ,n−1)
holds between the coordinates of the vector γ .

As in [12], we build a set of vectors U and B. Then, when 0 < ν < 1 for Ĝ1, j(t,ν) we
have the following results (the proof is similar to the proof of Lemma 1.1 and 1.2 in [12]):

L e m m a 2. Let γ1 < γ2 < · · ·< γn−r ≤ γn−r+1 ≤ ·· · ≤ γn. Then for any multi-index
m and any even number N, for which NU has only even coordinates, there exist constants Ci
(i = 0,1, . . . ,n) such that for any ν , 0 < ν < 1,

|DmĜ1, j| ≤
ν
− max

i=1,...,2n−1
|µ i|

(Cn| lnν |n + · · ·+C0)

(1+ν−N(tNγ + tNρ + · · ·+ tNδ )) . . .(1+ν−N(tNγ + · · ·+ tNσ ))
, (11)

where out of all subsets of U corresponding to B the one present in the multipliers of the
inequality (11) is the smallest.
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L e m m a 3. Let γ1 < γ2 < · · ·< γn−r ≤ γn−r+1 ≤ ·· · ≤ γn. Then there exist numbers
ai (i = 0, . . . , l) and a natural number N0 such that for any ν , 0 < ν < 1, and N > N0 the
following inequality holds:∫

∞

0
(n)
∫

∞

0

dt1 . . .dtn
(1+ν−N(tNγ + tNρ + · · ·+ tNδ )) · · ·(1+ν−N(tNγ + · · ·+ tNσ ))

≤ ν
min

i=1,...,r
|µ i|(

al | lnν |l + · · ·+a0

)
,

(12)

where l (l ≤ r) is the number of equalities among the coordinates of the vector
γ = (γ1, . . . ,γn).

Regularization of a Function and Integral Representation Through a Multi-
anisotropic Kernels. For any measurable function f consider the regularization with the
kernel Ĝ0(t,ν):

fν(x) =
1

(2π)
n
2

∫
Rn

f (t)Ĝ0(t− x,ν)dt, x ∈ Rn. (13)

Then the function fν will have the usual properties of the regularization, i.e.
L e m m a 4. If f ∈ Lp(Rn), 1 < p < ∞, then fν ∈ Lp(Rn), ‖ fν‖Lp(Rn) → 0

as ν → ∞ and lim
ν→0
‖ fν − f‖Lp(Rn) = 0.

As in [12] (see Theorem 3.1), we can prove the following theorem of integral
representation using the regularization (13):

T h e o r e m 1. Let a function f have the weak derivatives Dα i
f , where

i = 1, . . . ,n+2, α i are the vertices of a completely regular polyhedron N and Dα i
f∈Lp(Rn),

i = 1, . . . ,n+2, 1≤ p < ∞. Then for almost all x∈Rn it has the representation

f (x) = fh(x)+ lim
ε→0

n+1

∑
i=1

1

(2π)
n
2

∫ h

ε

dν

∫
Rn

Dα i
f (t)Ĝ1,i(t− x,ν)dt. (14)

Embedding Theorems for Multianisotropic Spaces. Denote WN
p (Rn) = { f :

f∈Lp (Rn) , Dα i
f∈Lp (Rn) , i = 1, . . . ,n+ 2} and call the multianisotropic Sobolev space

with the norm

‖ f‖WN
p (Rn) =

n+2

∑
i=1

∥∥∥Dα i
f
∥∥∥

Lp
.

Using the results of the previous section we can prove the following embedding
theorem for multianisotropic spaces with two vertices of anisotropicity (for multianisotropic
spaces with one vertex of anisotropicity see [12] , Theorem 4.2):

T h e o r e m 2. Let γ1 < γ2 < · · · < γn−r ≤ γn−r+1 ≤ ·· · ≤ γn, p and q (p ≤ q)
be numbers such that 1 < p ≤ ∞ or 1 ≤ p < ∞ and q = ∞, m = (m1,m2, . . . ,mn) be

a multi-index. Denote χ = max
i=1,...,n+2

(∣∣µ i
∣∣+ (m,µ i

))
− min

i=1,...,r

∣∣µ i
∣∣(1− 1

p
+

1
q

)
.

If χ < 1, then DmWN
p (Rn) ↪→ Lq(Rn), i.e. any function f ∈WN

p (Rn) has a weak
derivative Dm f ∈ Lq(Rn) and for any h > 0 the following inequality holds:

‖Dm f‖Lq(Rn) ≤ h1−χ

(
al+n| lnh|l+n + · · ·+a0

)n+2

∑
i=1

∥∥∥Dα i
f
∥∥∥

Lp(Rn)

+h−χ

(
bl+n| lnh|l+n + · · ·+b0

)
‖ f‖Lp(Rn),

(15)

for some constants a0, . . . ,al+n, b0, . . . ,bl+n, and l (l ≤ r) is the number of equalities between
the coordinates of the vector γ = (γ1, . . . ,γn).
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