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We bring an example of integrable function on [0,1]2, so that the double Fourier–Haar
series has a subseries, whose majorant of partial sums does not belong to L1,∞.
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Introduction. We construct an example of double Fourier–Haar series with a sub-
series having nonregular distribution of the majorant. In order to formulate the results recall
the definition of Haar system on [0,1] as follows.

The first Haar function is: χ1(x) = 1. Then for n = 2k + i, where i = 1,2, ...,2k,
k = 0,1,2, ..., denote

χn(x) = χ
(k)
i (x) =


2

k
2 , if

i−1
2k ≤ x <

2i−1
2k+1 ,

2−
k
2 , if

2i−1
2k+1 ≤ x <

i
2k ,

0, if x 6∈
[

i−1
2k ,

i
2k

)
.

(1)

For n = 2k + i denote {n}= suppχn =

[
i−1
2k ,

i
2k

)
.

We say a function f is A-integrable on a set G, if lim
λ→∞

λ ·mes{x ∈ G : | f (x)| >
> λ}= 0 and the limit

lim
λ→∞

∫
G
[ f (x)]λ dx =: (A)

∫
G

f (x)dx (2)

exists, where

[ f (x)]λ =

{
f (x), if | f (x)| ≤ λ ,
0, otherwise. (3)

Preliminary Theorems. The following theorem was proved in [1].
T h e o r e m A 1. Let the series

∞

∑
n=1

anχn(x) (4)
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be Fourier–Haar series of some integrable function and εn, n ∈ N, be a bounded sequence.

Then the series
∞

∑
n=1

εnanχn(x) is a Fourier–Haar series of an A-integrable function, i.e. there

exists an A-integrable function fε , so that for any n we have

εnan = (A)
∫ 1

0
fε(x)χn(x)dx.

Theorem A1 in case εn = 0 or 1 was stated by L.A. Balashov [2].
It can also be proved applying the following theorems from [1].
T h e o r e m A 2. The conditions

lim
λ→∞

λ ·mes

x ∈ [0,1] :

{
∞

∑
n=1

a2
nχ

2
n (x)

}1/2

> λ

= 0 (5)

and

lim
λ→∞

λ ·mes

{
x ∈ [0,1] : S∗(x) := sup

N

∣∣∣∣∣ N

∑
n=1

anχn(x)

∣∣∣∣∣> λ

}
= 0 (6)

are equivalent to each other.
T h e o r e m A 3. If the series (4) satisfies the condition (6), then it is a Fourier–

Haar series in the sense of A-integrability.
The following theorem is proved in [3].
T h e o r e m A 4. The condition (5) is satisfied if and only if for any bounded

sequence
{

εn

}∞

n=1
the series

∞

∑
n=1

εnanχn(x) is a Fourier–Haar series in the sense of

A-integrability.
In particular, it was proved in [1], that if the function S∗(x,y) =

= supk

∣∣∣∣∣ 2k

∑
m,n=1

amnχm(x)χn(y)

∣∣∣∣∣ satisfies a condition analogous to (6), then the series

∞

∑
m,n=1

amnχm(x)χn(y) is a Fourier–Haar series of an A-integrable function in the sense of

A-integrability. Nevertheless, in contrast to the one dimensional case, the analogue of
Theorem A1 does not hold for the double Fourier–Haar series.

Main Result.
T h e o r e m 1. There exists a series

∞

∑
m,n=1

am,nχm(x)χn(y), which is a Fourier–Haar

series of Lebesgue integrable function on [0,1]2 and a sequence εmn = 0, 1, (m,n) ∈ N2,
such that

limsup
λ→∞

λ ·mes{x ∈ [0,1]2 : S∗(x,y)> λ}= ∞, (7)

where S∗(x,y) = supk

∣∣∣∣∣ 2k

∑
m,n=1

εmnamnχm(x)χn(y)

∣∣∣∣∣ .
P r o o f . It is known and easy to verify that the 2kth square partial sums of the series

∞

∑
m,n=1

amnχm(x)χn(y), where amn = aman and am = χm(+0), (8)
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satisfy the equality (see [4])

σk(x,y) :=
2k

∑
m,n=1

amnχm(x)χn(y) =

2k

∑
m=1

amχm(x)
2k

∑
n=1

anχn(y) = 22k
1[0,2−k]2(x,y).

(9)

For any positive sequence α j, j ∈ N, satisfying
∞

∑
j=1

α j < ∞, (10)

and for any increasing sequence k j ∈ N, satisfying
k j+1 > 3 · k j, (11)

the series
∞

∑
j=1

α j(σk2 j+1(x,y)−σk2 j(x,y)) =:
∞

∑
j=1

α jΨ j(x,y) (12)

is a Fourier–Haar series of a Lebesgue integrable function.
Indeed, it follows from (9), that ‖Ψ j‖1 ≤ 2. Therefore, applying (10) and taking into

account the orthogonality of the functions Ψ j, j ∈ N, one can obtain that the series (12) is a
Fourier–Haar series of its sum, which is an integrable function.

Note, that if m = 2p +1, then am = 2
p
2 . Hence, the condition (11) guarantees for the

sum (see also (1))

g j(x,y) :=
3k2 j

∑
p=k2 j+1

22k2 j χ
(p)
1 (x)χ

(4k2 j−p)
1 (y) (13)

to be a subsum of the finite sums
Ψ j(x,y) = ∑

2k2 j<max(m,n)≤2k2 j+1

amnχm(x)χn(y), (14)

i.e. there exist numbers εmn = 0 or 1, so that
g j(x,y) = ∑

2k2 j<max(m,n)≤2k2 j+1

εmnamnχm(x)χn(y). (15)

For a fixed j ∈ N consider the rectangle ∆
j
p = supp

(
χ
(p)
1 χ

(4k2 j−p)
1

)
.

Obviously mes(∆ j
p) = 2−4k2 j . It is not hard to verify that a quarter of each

rectangle ∆
j
p does not intersect the other rectangles, so we have

mes

∆
j
p

∖ ⋃
p′ 6=p

∆
j
p′

≥ 1
4

mes(∆ j
p). Thus we get

mes(Fj)≥
1
4

3k2 j

∑
p=k2 j+1

2−4k2 j ≥
k2 j

2
·2−4k2 j , where Fj :=

3k2 j⋃
p=k2 j+1

∆
j
p\
⋃

p′ 6=p

∆
j
p′

 . (16)

Obviously (see (1) and (13))

max
k2 j+1≤p≤3k2 j

∣∣∣22k2 j χ
(p)
1 (x)χ

(4k2 j−p)
1 (y)

∣∣∣= 24k2 j for (x,y) ∈ Fj. (17)

Take k j = 22 j and α j = 2− j. We claim that the series (12) satisfies the conditions of
Theorem 1. We have already noted that (12) is a Fourier–Haar series. Since (13) is a subsum
of (14), for corresponding εmn = 0, 1 the series

∞

∑
j=1

2− j
∑

2k2 j<max(m,n)≤2k2 j+1

εmnamnχm(x)χn(y) =
∞

∑
j=1

2− jg j(x,y) (18)
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can be considered as a subseries of (12).
Denote by S∗(x,y) the majorant of 2kth square partial sums of the series

∞

∑
j=1

2− jg j(x,y), considered as a double Haar series.

It follows from (16) and (17), that
S∗(x,y)≥ 2− j−1 ·224 j+2

for (x,y) ∈ Fj, (19)
and

mes(Fj)≥ 24 j−1 ·2−24 j+2
. (20)

Thus, for λ j = 2− j−2 ·224 j+2
we have

λ j ·mes{(x,y) ∈ [0,1]2 : S∗(x,y)> λ j} ≥ 23 j−2.
Hence,

limsup
λ→∞

λ ·mes{(x,y) ∈ [0,1]2 : S∗(x,y)> λ}= ∞. �

It follows from (16), (17), that the series ∑
(m,n)∈N2

amnχm(x)χn(y) does not satisfy

lim
λ→∞

λ ·mes

(x,y) ∈ [0,1]2 :

 ∑
(m,n)∈N2

a2
mnχ

2
m(x)χ

2
n (y)

1/2

> λ

= 0. (21)

On the other hand, taking into account that ∑
(m,n)∈N2

amnχm(x)χn(y) is a Fourier–Haar series,

we get

lim
λ→∞

λ ·mes

{
(x,y) ∈ [0,1]2 : sup

k

∣∣∣∣∣ 2k

∑
m,n=1

amnχm(x)χn(y)

∣∣∣∣∣> λ

}
= 0. (22)

Hence, generally speaking (21) does not follow from (22).
It is interesting to find out whether the condition (21) implies (22). If it is the case,

then the following will take place: if the series
∞

∑
m,n=1

amnχm(x)χn(y) satisfies (21), then the

series
∞

∑
m,n=1

εmnamnχm(x)χn(y) is a Fourier–Haar series in the sense of A-integrability for any

bounded sequence εmn, (m,n) ∈ N2.
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