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Introduction. The Fourier series of an integrable function with respect to Vilenkin
system can be divergent almost everywhere (see [1, 2]). The same holds also for Fourier
series with respect to generalized Haar system generated by an unbounded sequence pk.
In the present paper we introduce a new summation method for series with respect to Vilenkin
and generalized Haar systems and prove some properties of this method. In particular, we
prove the almost everywhere (a.e.) convergence of sums of Fourier series of an integrable
function by that method.

We recall the definitions of the Vilenkin system (see [3]). Let pk, pk ≥ 2, k ∈ N,
be a sequence of natural numbers and m0 = 1, mk+1 = mk pk+1. Then every nonnegative
integer n is uniquely represented by the series

n =
∞

∑
k=1

nkmk−1, where nk ∈ {0,1, ..., pk−1}, k ∈ N.

Every point x ∈ [0,1) can be represented in the following way:

x =
∞

∑
k=1

xk

mk
, where xk ∈ {0,1, ..., pk−1}, k ∈ N.

If there are two different representations, we choose the one for which lim
k→∞

xk = 0. The

functions

Rk(x) := exp
(

2πixk

pk

)
, k ∈ N,

are called generalized Rademacher functions.
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The Vilenkin system is given by

ψ0(x)≡ 1 and ψn(x) :=
∞

∏
k=1

Rnk
k (x) for n ∈ N. (1)

Note, that in the case pk = 2, k ∈ N, the Vilenkin system coincides with the Walsh system.
For n = mk + r(pk+1 − 1) + s − 1, where 0 ≤ r ≤ mk − 1, 1 ≤ s ≤ pk+1 − 1,

we put (see [3])

χn(x) := χ
k
r,s(x) :=


√

mk exp
(

2πi
xk+1

pk+1
s
)

when x ∈
[

r
mk

,
r+1
mk

)
,

0 when x 6∈
[

r
mk

,
r+1
mk

)
.

(2)

The system
{

χn(x)
}∞

n=0
, where χ0(x) ≡ 1, is called the generalized Haar system generated

by sequence pk, k ∈ N. When pk = 2, k ∈ N, the generalized Haar system coincides with
the classical Haar system.

The Vilenkin and the generalized Haar systems are well investigated in the
mathematical literature. When supk pk < ∞, the Vilenkin and the generalized Haar systems
properties are very similar with the ones of Walsh and Haar systems, correspondingly.

Definition of the Summation Method. In this section we define a new method of
summation for Vilenkin and generalized Haar systems. We denote

Ik =

{[
j

mk+1
,

j+1
mk+1

)
: j = 0,1, ...,mk+1−1

}
, k = 1,2, ...

For J ∈ Ik, we denote by J̃ the interval from Ik−1, containing J. The intervals Jl ,
l ∈ {0,±1,±2, ...,}, are defined in the following way:

1. Jl ⊂ J̃, J0 = J.

2. The right endpoint of Jl coincides with the left endpoint of Jl+1, with the convention

that we identify the endpoints of J̃, in particular, if the right endpoint of Jl is
j

mk
, then

the left endpoint of Jl+1 is
j−1
mk

.

We put Jq =
q⋃

l=−q

Jl , q = 0,1,2, ... It is clear that J0 = J.

For x ∈ [0,1) and k ∈ N we denote by Ik,x the interval satisfying Ik,x ∈ Ik and x ∈ Ik,x.

For q ∈
{

1,2, ...,
[ pk+1

2

]}
we denote

ϕ
q
k,x(t) =


mk+1

q

(
1− |l|

q

)
, if t ∈ (Ik,x)l and |l|< q,

0, if t 6∈ Iq−1
k,x .

(3)

Let in the sequel { fn(x)}∞
n=0 be one of the systems (1), (2). We will consider series

∞

∑
n=0

an fn(x). (4)

Taking into account the definitions of the system
{

fn(x)
}∞

n=0
, it is clear that for each ϕ

q
k,x,

we have

( fn,ϕ
q
k,x) :=

∫ 1

0
fn(t)ϕ

q
k,x(t)dt = 0 when n≥ mk+1.
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Therefore, for each series (4) and x ∈ [0,1), every k and q the sums

Sk,q(x) :=
∞

∑
n=0

an

1∫
0

fn(t)ϕ
q
k,x(t)dt (5)

are well-defined. We denote
S∗(x) := sup

k,q
|Sk,q(x)|. (6)

It is not difficult to check that (5) defines a linear method of summation, i.e. there exist
numbers α

k,q
n and β

k,q
n , such that:

1. Sk,q(x) =
mk+1−1

∑
n=0

α
k,q
n anψn(x) when { fn}∞

n=0 =
{

ψn

}∞

n=0
;

2. Sk,q(x) =
mk+1−1

∑
n=0

β
k,q
n anχn(x) when { fn}∞

n=0 =
{

χn

}∞

n=0
.

Note that this summation method differs from methods considered in the literature for
systems { fn}∞

n=0. For comparison see [4].
Theorems. It is clear, that if the series (4) is the Fourier series of an integrable

function f , then

Sk,q( f ,x) := Sk,q(x) =
1∫

0

f (t)ϕq
k,x(t)dt (7)

and
S∗( f ,x) := S∗(x)≤ sup

k,q :
1≤q≤[ pk+1

2 ]

∫
Iq
k,x

| f (t)ϕq
k,x(t)|dt. (8)

Denote
M∗( f ,x) = sup

k,q :
0≤q≤[ pk+1

2 ]−1

1
|Iq

k,x|

∫
Iq
k,x

| f (t)|dt.

L e m m a . The inequality S∗( f ,x)≤M∗( f ,x) holds for each f ∈ L1.

P r o o f . Indeed, for each Iq
k,x,

(
1≤ q≤

[ pk+1

2

])
using (3) we will get

∫
Iq
k,x

| f (t)ϕq
k,x(t)|dt =

mk+1

q2

q−1

∑
ν=0

∫
Iν
k,x

| f (t)|dt ≤

M∗( f ,x)
mk+1

q2

q−1

∑
ν=0

2ν +1
mk+1

=M∗( f ,x). �

T h e o r e m 1. For any integrable function f and λ > 0

mes{x ∈ [0,1) : S∗( f ,x)> λ} ≤ 3
λ

1∫
0

| f (t)|dt. (9)

P r o o f . First, we prove that

mes{x ∈ [0,1) : M∗( f ,x)> λ} ≤ 3
λ

1∫
0

| f (t)|dt. (10)
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Let Eλ = {x ∈ [0,1) : M∗( f ,x) > λ}. Then for every x ∈ Eλ there exists Iq
k,x

with q≤
[ pk+1

2

]
−1 such that

1
|Iq

k,x|

∫
Iq
k,x

| f (t)|dt > λ . (11)

We denote the collection of all Iq
k,x, satisfying (11), by G. Then Eλ =

⋃
I∈G

I. Let I1 ∈ G be

an interval from G with the biggest measure. Note that such I1 (maybe not unique) exists,

because mes(Iq
k,x) =

2q+1
mk+1

and 0 ≤ q ≤
[ pk+1

2

]
−1. By induction we choose the sequence

I j ∈ G with properties
G j := {I ∈ G : I∩ Iν = /0, ν = 1,2, ..., j−1} (12)

and
mes(I j) = max{mes(I) : I ∈ G j}. (13)

Let I ∈ G and j be the smallest natural number for which I∩ I j 6= /0. Of course, I j = I
q j
k j ,x j

for

some k j, x j, q j. Let Î j = I
3q j
k j ,x j

. It is not difficult to check that from (12), (13) it follows that

I ⊂ Î j. Therefore, Eλ ⊂
⋃

j Î j. Hence, taking into account (11) and (12), we obtain

mes(Eλ )≤ 3∑
j
|I j|<

3
λ

∑
j

∫
I j

| f (t)|dt =
3
λ

∫
⋃

I j

| f (t)|dt ≤ 3
λ

∥∥ f
∥∥

1. �

The next theorem follows from Theorem 1 by standard methods (see [5]).
T h e o r e m 2. For any integrable function f ,

mes{x ∈ [0,1) : S∗( f ,x)> λ}= o
(

1
λ

)
. (14)

P r o o f . Let f1,λ (t) = f (t), if | f (t)| ≤ λ/2 and f1,λ (t) = 0, if | f (t)| > λ/2.
Put f2,λ = f − f1,λ . Then, taking into account that

∥∥ϕ
q
k,x

∥∥
1 = 1, we obtain

mes{x ∈ [0,1) : S∗( f ,x)> λ} ≤mes
{

x ∈ [0,1) : S∗( f1,λ ,x)>
λ

2

}
+

mes
{

x ∈ [0,1) : S∗( f2,λ ,x)>
λ

2

}
= mes

{
x ∈ [0,1) : S∗( f2,λ ,x)>

λ

2

}
≤ 6

λ

∥∥ f2,λ
∥∥

1.

To complete the prove note that ‖ f2,λ‖1→ 0 when λ → ∞. �
It is clear, that if f is continuous on [0,1), then lim

k→∞
Sk,q( f ,x) = f (x) uniformly on

[0,1). Using this fact, one can obtain the following theorem.
T h e o r e m 3. If f ∈ L1[0,1), then

lim
k→∞

Sk,q( f ,x) = f (x) a.e. on [0,1). (15)

P r o o f . It is enough to prove that for each z > 0 the measure of the set
Pz := {x ∈ [0,1) : limsup

k→∞

|Sk,q(x)− f (x)|> z}

is zero. For arbitrary ε > 0 we choose a continuous function g with ‖ f − g‖1 < ε. Because
lim
k→∞

Sk,q(g,x) = g(x) uniformly, then

mes(Pz) = mes{x ∈ [0,1) : limsup
k→∞

|Sk,q( f −g,x)− ( f (x)−g(x))|> z} ≤

mes
{

x : limsup
k→∞

|Sk,q( f −g,x)|> z
2

}
+mes

{
x : | f (x)−g(x)|> z

2

}
≤

6
z
‖ f −g‖1 +

2
z
‖ f −g‖1 <

8ε

z
.

Then the proof of the Theorem follows, because ε is an arbitrary positive number. �
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We will use the properties of the considered summation method and the majorant
S∗( f ,x) in our future investigations of uniqueness questions for series with respect to Vilenkin
and generalized Haar systems.
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