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M a t h e m a t i c s

FUZZY BAYESIAN INFERENCES

V. G. BARDAKHCHYAN ∗
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We consider generalization of Bayesian theorem for the cases with fuzzy observations.
It will be considered one of the forms of fuzzy Bayesian theorem introduced by Viertl.
One can observe that it cannot be used as a generalization of ordinary Bayesian theorem
with the form of likelihood function. We introduce other types of likelihood function
satisfying some definite conditions.
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Introduction. The fuzzy measure theory has generated a lot of new concepts, such as
fuzzy random variables, their distributions and density functions. It also arised new problems,
like statistics concerned with fuzzy observations, hypothesis testing for such data, modeling
with such data (for example, fitting with linear fuzzy regressions) and so on (see, f.e., [1]).
Our study is concerned with fuzzy Bayesian analysis. First this question was considered by
Viertl in one of his reports. He emphasized the necessity of fuzzy Bayesian theorem and he
described the structure of the theory and the ways to make fuzzy analog of Bayesian theorem.
His approach can be found in [2, 3]. In these studies the theorem and related concepts and
properties are described. .

In his definition the fuzzy Bayesian theorem has the following form:

πδ (θ |x1,x2, ...,xn) =
2πδ (θ)l(θ ,x1,x2, ...,xn)∫

(πδ (θ)+πδ (θ))l(θ ,x1,x2, ...,xn)dθ

, (1)

πδ (θ |x1,x2, ...,xn) =
2πδ (θ)l(θ ,x1,x2, ...,xn)∫

(πδ (θ)+πδ (θ))l(θ ,x1,x2, ...,xn)dθ

. (2)

Where πδ (θ |x1,x2, ...,xn) and πδ (θ |x1,x2, ...,xn) stand for lower and upper bounds
of the a posterior fuzzy density of δ -level, πδ (θ) and πδ (θ) are those for respective prior
distribution, δ ∈ [0,1] is the level of confidence, i.e. the level of belonging in the theory of
fuzzy sets, l(θ ,x1,x2, ...,xn) is the likelihood function (LF). Most of the questions arising in
this field is concerned with the definition of this LF, when the observations x1, ...,xn are fuzzy.

For these variants of definition of posterior fuzzy densities it was proved that sequen-
tial usage of the theorem and the using of all collected data at once gives the same result for
the posterior distributions. The proof can be found in [2–4]. This property is essential, as
if we could find the distribution, which is self conjugate in the sense of posterior and prior
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distributions for one observation (meaning that the posterior and prior distributions are of the
same families), it would be self-conjugate for any size of samples.

Viertl’s LF has the following form

l(θ ,x1,x2, ...,xn) = ∏
i

(∫ ri

li
ξi(x) f (x|θ)dx

)
, (3)

here ξi(x) is the membership function of the fuzzy observation xi, [li,ri] is its support, and
f (x|θ) is the density of the conditional distribution see for more details [2,4]. Viertl has given
a further generalization of the theorem, taking LF to be fuzzy [2].

The problem we consider here is dealing with the normal distribution in the fuzzy
case. The normal distribution has the above mentioned self-conjugate property. For the fuzzy
version this is not the case in reality, because a normally distributed variable will note remain
normal for fuzzy triangle observations. Moreover, if we consider more than one observation
the precise calculation of new parameters becomes extremely hard.

In the paper two other versions of fuzzy Bayesian theorems are introduced, more
precisely for LF, since the above stated version has some flaws. Some related questions are
considered in [5, 6].

Bayesian Theorem with Fuzzy Triangular Observations. Here only the fuzzy
triangular number for observations are considered and more explicit formulas for the
theorem are given. Let’s start with the formula making flaws of the above mentioned
version of LF explicit.

P r o p o s i t i o n 1. If our observation in Eq. (3) is a triangular fuzzy number, i.e.

ξi(x) =

{
(x− li)/(mi− li), if x ∈ [li,mi]

(ri− x)/(ri−mi), if x ∈ [mi,ri]
, then the Eq. (3) takes the following form:

l(θ ,x1,x2, ...,xn) = ∏
i

(
1

ri−mi

∫ ri

mi

F(x|θ)dx− 1
mi− li

∫ mi

li
F(x|θ)dx

)
. (4)

P r o o f . Consideration of one observation will be enough, and after simple
operations (integrating by parts) we get∫ ri

li
ξi(x) f (x|θ)dx =

∫ mi

li

x− li
mi− li

f (x|θ)dx+
∫ ri

mi

ri− x
ri−mi

f (x|θ)dx

= F(mi|θ)−
1

mi− li

∫ mi

li
F(x|θ)dx−F(mi|θ)+

1
ri−mi

∫ ri

mi

F(x|θ)dx

=
1

ri−mi

∫ ri

mi

F(x|θ)dx− 1
mi− li

∫ mi

li
F(x|θ)dx. �

The last expression means that the likelihood function with fuzzy triangular observa-
tion comes to the difference of the average values of cumulative distribution function on the
[mi,ri] and on the [li,mi].

R e m a r k . One can observe, that if li→ ri the function vanishes for the continuous
distributions. Therefore this cannot be taken as a generalization of ordinary LF for continuous
random variable, other extensions as LF should be taken for fuzzy observations.

Generally the following proposition is true.
P r o p o s i t i o n 2. Let a prior distribution be collection of fuzzy triangular num-

bers for each value of arguments and for δ = 1 have a normal distribution. If the observations
are crisp (non-fuzzy) from normal distribution, then the posterior fuzzy distribution is normal
at top, i.e. δ = 1 when we use ordinary LF for crisp data.
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For this simple argument, one should just verify that π1(θ) = π1(θ) = f (θ).
However, as one can see, this fails to be in the case when the observations are fuzzy.

The situation in that case can be stated by the following theorem.
T h e o r e m . For the prior normal distribution (N(µ0,σ

2
0 )) and the fuzzy triangular

observations from the normal distribution (N(θ ,σ2)), the posterior distribution is not normal.
For one observation the new estimate of the mean (location) parameter is

θ̂ = µ0σ
2/(σ2 +σ

2
0 )+σ

2
0 B/((σ2 +σ

2
0 )A),

where A and B are given below (see Eqs. (6), (8)).
P r o o f . So we have that for every δ ∈ [0, 1]

g(θ) = πδ (θ) = πδ (θ) =
1

σ0
√

2π
e
− (θ−µ0)

2

2σ2
0 , f (x|θ) = 1

σ
√

2π
e−

(x−θ)2

2σ2 ,

ξ (x) =

{
(x− l)/(m− l), l ≤ x≤ m,

(r− x)/(r−m), m≤ x≤ r.

The new estimate will be

θ̂ =
∫

Θ

θg(θ)l(x,θ)dθ

/∫
Θ

g(θ)l(x,θ)dθ . (5)

Let’s start with the denominator,∫
Θ

g(θ)l(x,θ)dθ =
∫

∞

−∞

1
σ0
√

2π
e
− (θ−µ0)

2

2σ2
0

(∫
∞

−∞

ξ (x)
1

σ
√

2π
e−

(x−θ)2

2σ2 dx
)

dθ

=
1

2σ0σπ

∫
∞

−∞

ξ (x)

∫ ∞

−∞

e
− (θ−µ0)

2

2σ2
0
− (x−θ)2

2σ2
dθ

dx.

Taking α =
σ2

σ2 +σ2
0

and β 2 =
1

σ2 +σ2
0
, we will have

∫
Θ

g(θ)l(x,θ)dθ =
1

2σ0σπ

∫
∞

−∞

ξ (x)e−
((x−µ0)β )

2

2

√
2πα(1−α)(σ2 +σ2

0 )dx

=
β√
2π

∫
∞

−∞

ξ (x)e−
((x−µ0)β )

2

2 dx.

∫
∞

−∞

g(θ)l(x,θ)dθ =
1

(m− l)β

(
φ
(
(l−µ0)β

)
−φ
(
(m−µ0)β

))
− 1

(r−m)β

(
φ
(
(m−µ0)β

)
−φ
(
(r−µ0)β

))
+

µ0− l
m− l

(
Φ
(
(m−µ0)β

)
−Φ

(
(l−µ0)β

))
+

r−µ0

r−m

(
Φ
(
(r−µ0)β

)
−Φ

(
(m−µ0)β

))
=: A,

(6)

where φ and Φ are density and cumulative distribution functions of standard normal
distribution respectively.

Taking into account Eq. (6), we will have for the numerator:∫
Θ

θg(θ)l(x,θ)dθ = µ0αA+(1−α)B, (7)
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where B is the following:

B :=
r

(r−m)β

(
φ
(
(m−µ0)β

)
−φ
(
(r−µ0)β

))
+ µ0

r
r−m

(
Φ
(
(r−µ0)β

)
−Φ

(
(m−µ0)β

))
− l

(m− l)β

(
φ
(
(l−µ0)β

)
− φ

(
(m−µ0)β

))
− µ0

l
m− l

(
Φ
(
(m−µ0β

)
− Φ

(
(l−µ0)β

))
+

2µ0

(m− l)β

(
φ
(
(l−µ0)β

)
− φ

(
(m−µ0)β

))
+

µ2
0

m− l

(
Φ
(
(m−µ0)β

)
− Φ

(
(l−µ0)β

))
+

1
(m− l)β 2

(
Φ
(
(m−µ0)β

)
−Φ

(
(l−µ0)β

)
+

+φ
(
(l−µ0)β

)
(l−µ0)β −φ

(
(m−µ0)β

)
(m−µ0)β

)
− 2µ0

(r−m)β

(
φ
(
(m−µ0)β

)
−φ
(
(r−µ0)β

))
−

µ2
0

r−m

(
Φ
(
(r−µ0)β

)
−Φ

(
(m−µ0)β

))
− 1
(r−m)β 2

(
Φ
(
(r−µ0)β

)
−Φ

(
(m−µ0)β

)
+

+φ
(
(m−µ0)β

)
(m−µ0)β −φ

(
(r−µ0)β

)
(r−µ0)β

)
.

(8)

In the expression the following equations are used (see [7], p. 393):∫
φ(x)dx = Φ(x)+C;

∫
xφ(x)dx =−φ(x)+C;

∫
x2

φ(x)dx = Φ(x)− xφ(x)+C.

So finally we get

θ̂ = αµ0 +(1−α)
B
A
. (9)

Obviously further computations cannot be done directly, since the new θ is not of
normal distribution.

Other Forms for LF. As we stated in Remark 2, the used LF cannot be taken as a
generalization of ordinary LF. So let’s look for other possible approaches. One of them can
be stated by formula

l(θ ,x1,x2, ...,xn) = ∏
i

f (DF(xi)|θ), (10)

where DF(·) denotes some defuzzification for any fuzzy input, generally not depending on
exogenous parameter θ and if so, then we will have the property for normal function as in
crisp case. That is for any fuzzy observations of normal distribution prior normal distribution
will remain normal. This is because the problem with the LF used by Viertl is that this
generalization does not express probability.

By another approach we evaluate the intervals of probabilities for each level for a
given distribution in LF. That is as new fuzzy numbers we will have α-cuts the following
intervals yα = [minx∈xα

f (x|θ), maxx∈xα
f (x|θ)], where xα stands for α-cut of the original

fuzzy observation. So we will have maximal and minimal probabilities for each level of
membership. And as new fuzzy number we take η(y) = max{α|y ∈ yα}. Note that we
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evaluate the maximal and minimal probabilities depending as well on θ . As a LF for this
case we take

l(θ ,x1,x2, ...,xn) = ∏
i

DF(yi). (11)

This technique is very alike (but differs essentialy) to the one used for the construction of
Sugeno integral (see [8]). Note that the yi-es express probabilities, so this is much more
likely to be more convenient generalization of LF.

However, in this case depending on the defuzzification technique that we use, the
property for normal distribution can fail to be fulfilled. For example, taking as defuzzification

DF(y) =
∫

η(y)ydy, one can see that the normal does not remain normal.

For simplicity let’s examine a symmetrical triangle
(

i.e. m =
l + r

2

)
. We will have

the following cases:
Case 1. θ ∈ (−∞, l]; Case 2. θ ∈ [r,∞); Case 3. θ ∈ (l,m]; Case 4. θ ∈ [m,r).
For example, in the Case 1 the following form for η is obtained:

η(y) =


r−σ(−2ln(yσ

√
2π))1/2−θ

r−m
, y ∈

(
1

σ
√

2π
e−

(r−θ)2

2σ2 ,
1

σ
√

2π
e−

(m−θ)2

2σ2

]
,

σ(−2ln(yσ
√

2π))1/2 +θ − l
m− l

, y ∈
[

1
σ
√

2π
e−

(m−θ)2

2σ2 ,
1

σ
√

2π
e−

(l−θ)2

2σ2

)
,

and for this case, so for the all others, the distribution does not remain normal.

DF(y) =
∫

η(y)ydy =
∫ r−θ

m−θ

r− t−θ

r−m
· 1

2πσ2 ·
t

σ2 e−
t2

2σ2 dt+

+
∫ m−θ

l−θ

t +θ − l
m− l

· 1
2πσ2 ·

t
σ2 e−

t2

2σ2 dt.

Since θ is under the integral, Φ+φ form can be obtained, from which obviously we
will not have a normal distribution. However, for some other types of defuzzification we will
have the desired property (for example, if we take the tops).
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