Mathematics

ON A REPRESENTATION OF THE RIEMANN ZETA FUNCTION

Ye. S. MKRTCHYAN *

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

In this paper a new representation of the Riemann zeta function in the disc $U(2,1)$ is obtained: $\zeta(z)=\frac{1}{z-1}+\sum_{n=0}^{\infty}(-1)^{n} \alpha_{n}(z-2)^{n}$, where the coefficients α_{k} are real numbers tending to zero. Hence is obtained $\gamma=\lim _{m \rightarrow \infty}\left[\sum_{k=0}^{n-1} \frac{\zeta^{(k)}(2)}{k!}-n\right]$, where γ is the Euler-Mascheroni constant.

MSC2010: 30D30, 30D20.
Keywords: Riemann function, Euler-Mascheroni constant, entire function, power series.

Introduction. Let us consider the Riemann function

$$
\begin{equation*}
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}} \tag{1}
\end{equation*}
$$

where $\operatorname{Re} z>1$.
It is well-known that this function has an analitic continuation in $\mathbb{C} \backslash\{1\}$ and has a simple pole of first order at $z=1$ (see [1]).

There are different representations of the Riemann function. For example:

$$
\zeta(z)=\frac{1}{z-1}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \gamma_{n}(z-1)^{n}
$$

where $\gamma_{n}=\lim _{m \rightarrow \infty}\left[\sum_{k=1}^{m} \frac{(\ln k)^{n}}{k}-\frac{(\ln m)^{n+1}}{n+1}\right]$ are the Stieltjes coefficients (see [2]).
In this paper a new representation of the Riemann function in the disc $U(2,1)$ is obtained: $\zeta(z)=\frac{1}{z-1}+\sum_{n=0}^{\infty}(-1)^{n} \alpha_{n}(z-2)^{n}$, where the coefficients α_{k} are real vanishing numbers. We obtain also the following formula:

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=0}^{n-1} \frac{\zeta^{(k)}(2)}{k!}-n\right] \tag{2}
\end{equation*}
$$

[^0]where γ is the Euler-Mascheroni constant.
In the proof we will use the following well-known relation (see, e.g., [2]):
\[

$$
\begin{equation*}
\gamma=\lim _{z \rightarrow 1}\left[\zeta(z)-\frac{1}{z-1}\right] . \tag{3}
\end{equation*}
$$

\]

The Main Result. Consider the function $\zeta(z)$ in $U(2,1)$, where

$$
U(2,1)=\{z \in \mathbb{C}:|z-2|<1\} .
$$

Below we present our main result.
Teorem 1. The Riemann zeta function can be represented in $U(2,1)$ by

$$
\begin{equation*}
\zeta(z)=\frac{1}{z-1}+\sum_{n=0}^{\infty}(-1)^{n} \alpha_{n}(z-2)^{n} \tag{4}
\end{equation*}
$$

where the coefficients α_{k} are real numbers tending to zero.
Proof. Let us represent the Riemann zeta function by power series in the neighborhood of $z=2$. We obtain that for all $z \in U(2,1)$

$$
\begin{equation*}
\zeta(z)=\sum_{n=0}^{\infty}(-1)^{n} c_{n}(z-2)^{n}, \tag{5}
\end{equation*}
$$

where $c_{0}=\zeta(2)=\frac{\pi^{2}}{6}, \quad(-1)^{n} c_{n}=\frac{\zeta^{(n)}(2)}{n!}, \quad c_{n}=\frac{1}{n!} \sum_{k=2}^{\infty} \frac{\ln ^{n} k}{k^{2}}$.
Denote $\alpha_{n}=c_{n}-1, \quad n=0,1,2 \ldots$
We have

$$
\zeta(z)=\sum_{n=0}^{\infty}(-1)^{n}\left[1+\left(c_{n}-1\right)\right](z-2)^{n}=\frac{1}{z-1}+\sum_{n=0}^{\infty}(-1)^{n} \alpha_{n}(z-2)^{n} .
$$

Thus we get (4) and it remains to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{n}=1 \tag{6}
\end{equation*}
$$

We have that the function $f(x)=\frac{\ln ^{n} x}{x^{2}}$ is a monotonic and decreasing for $x \geq \exp (n / 2)$.
Denote $m:=[\exp (n / 2)]$. In the case when $k-1 \geq m+1$ we have

$$
\begin{equation*}
\int_{k-1}^{k} f(x) d x \geq \frac{\ln ^{n} k}{k^{2}} \geq \int_{k}^{k+1} f(x) d x \tag{7}
\end{equation*}
$$

Summing the values in (7) for $k \geq m+2$, we obtain

$$
\begin{equation*}
\int_{m+1}^{+\infty} f(x) d x \geq \sum_{k=m+2}^{\infty} \frac{\ln ^{n} k}{k^{2}} \geq \int_{m+2}^{+\infty} f(x) d x . \tag{8}
\end{equation*}
$$

From here we get

$$
\begin{equation*}
\frac{1}{n!} \int_{2}^{+\infty} f(x) d x+B_{n} \geq c_{n} \geq \frac{1}{n!} \int_{2}^{+\infty} f(x) d x+D_{n} \tag{9}
\end{equation*}
$$

where $B_{n}=\frac{1}{n!}\left(\sum_{k=2}^{m+1} \frac{\ln ^{n} k}{k^{2}}-\int_{2}^{m+1} f(x) d x\right) ; D_{n}=\frac{1}{n!}\left(\sum_{k=2}^{m+1} \frac{\ln ^{n} k}{k^{2}}-\int_{2}^{m+2} f(x) d x\right)$.
Let us estimate the quantities B_{n} and D_{n}.

$$
\begin{gathered}
B_{n}=\frac{1}{n!}\left(\sum_{k=2}^{m-1} \frac{\ln ^{n} k}{k^{2}}-\int_{2}^{m} f(x) d x+\frac{\ln ^{n} m}{m^{2}}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}-\int_{m}^{m+1} f(x) d x\right) \leq \\
\leq \frac{1}{n!}\left(\sum_{k=2}^{m-1}\left(\frac{\ln ^{n} k}{k^{2}}-\int_{k}^{k+1} f(x) d x\right)+\frac{\ln ^{n} m}{m^{2}}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}-\frac{\ln ^{n} m}{(m+1)^{2}}\right)< \\
\quad<\frac{1}{n!}\left(\frac{\ln ^{n} m}{m^{2}}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}\right)=: \beta_{n} . \\
\begin{array}{r}
D_{n}= \\
n! \\
\geq
\end{array}\left(\sum_{k=2}^{m-1}\left[\frac{\ln ^{n} k}{k^{2}}-\int_{k}^{k+1} f(x) d x\right]+\frac{\ln ^{n} m}{m^{2}}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}-\int_{m}^{m+2} f(x) d x\right) \geq \\
\left.\left.=\frac{\ln ^{n} k}{k^{2}}-\frac{\ln ^{n}(k+1)}{(k+1)^{2}}\right]+\frac{\ln ^{n} m}{m^{2}}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}-\frac{\ln ^{n}(m+2)}{m^{2}}\right)= \\
=\frac{1}{n!}\left(\frac{\ln ^{n} 2}{4}+\frac{\ln ^{n}(m+1)}{(m+1)^{2}}-\frac{\ln ^{n}(m+2)}{m^{2}}\right)=: \delta_{n} .
\end{gathered}
$$

Thus, (9) we get from

$$
\begin{equation*}
\frac{1}{n!} \int_{2}^{+\infty} f(x) d x+\beta_{n} \geq c_{n} \geq \frac{1}{n!} \int_{2}^{+\infty} f(x) d x+\delta_{n} \tag{10}
\end{equation*}
$$

By using the relation $\lim _{n \rightarrow \infty} \frac{\ln ^{n}(\exp (n / 2)+b)}{n!(\exp (n / 2)+a)}=0$ for any a, b, we obtain that the sequences β_{n} and δ_{n} tend to 0 .

Hence to complete the proof, in view of (10), it suffices to show that

$$
\frac{1}{n!} A_{n} \rightarrow 1
$$

where $A_{n}=\int_{a}^{\infty} f(x) d x=\int_{a}^{\infty} \frac{\ln ^{n} x}{x^{2}} d x, \quad a=2$. Now let us evaluate

$$
\begin{gathered}
A_{1}=\int_{a}^{\infty} \frac{\ln x}{x^{2}} d x=\frac{\ln a}{a}+\frac{1}{a}, A_{2}=\int_{a}^{\infty} \frac{\ln ^{2} x}{x^{2}} d x=\frac{\ln ^{2} a}{a}+2 A_{1}, \ldots \\
A_{n}=\int_{a}^{\infty} \frac{\ln ^{n} x}{x^{2}} d x=\frac{\ln ^{n} a}{a}+n A_{n-1}
\end{gathered}
$$

Therefore we have

$$
\begin{equation*}
\frac{A_{n}}{n!}=\frac{1}{a}\left(1+\ln a+\frac{\ln ^{2} a}{2!}+\cdots+\frac{\ln ^{n} a}{n!}\right) \tag{11}
\end{equation*}
$$

where $n=1,2, \ldots$ The right hand side of (11) tends to $\frac{1}{a} \exp (\ln a)=1$.
Now we get the following
Corollary. We have the following representation for the Euler-Mascheroni constant:

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=0}^{n-1} \frac{\zeta^{(k)}(2)}{k!}-n\right] . \tag{12}
\end{equation*}
$$

Proof. We have that the function $\zeta(z)$ is analytic in $\mathbb{C} \backslash\{1\}$ and $z=1$ is a simple pole. Therefore, the second summand in the right hand side of (4) is an entire function. Now, by taking into account (3), we get from (4) that

$$
\gamma=\sum_{k=0}^{\infty} \alpha_{k}
$$

which implies (12).
Szegó has proved the following [3, 4].
Theorem 2. Suppose we have the representation $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$ in a neighborhood of the origin, where the coefficients f_{n} are bounded and have finitely many limit points d_{1}, \ldots, d_{k}. Then, there exist functions $g(z)$ and $h(z)$ such that

$$
\begin{equation*}
f(z)=g(z)+h(z), \quad g(z)=\sum_{n=0}^{\infty} g_{n} z^{n}, \quad h(z)=\sum_{n=0}^{\infty} h_{n} z^{n} \tag{13}
\end{equation*}
$$

where each coefficient g_{n} takes one of values d_{1}, \ldots, d_{k} and $h_{n} \rightarrow 0$ when $n \rightarrow \infty$.
Notice that, in view of (6), the Riemann zeta function $f(z)=\zeta(z)$ satisfies the conditions of Theorem 2 in the neighborhood of $z=2: U(2,1)$. Here $f_{n}=(-1)^{n} c_{n}$ and therefore $k=2$ and $d_{1}=-1, d_{2}=1$. Therefore, the representation (4) is a special case of the Szegó representation (13), where the functions $g(z)$ and $h(z)$ are presented explicitly:

$$
g(z)=\frac{1}{z-1}=\sum_{n=0}^{\infty}(-1)^{n}(z-2)^{n}, \quad h(z)=\sum_{n=0}^{\infty}(-1)^{n} \alpha_{n}(z-2)^{n}
$$

The author is grateful to one of the referees for very useful comments.

Received 18.02.2016

REFERENCES

1. Krantz S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, 1999, p. 158-160.
2. Hasse H. Ein Summiezungsverfahren für die Riemannsche Zeta-Reihe. // Math. Z. 1930, v. 32, p. 458-489.
3. Szegó G. Tschebyscheff'sche Polynome und Nichtfortsetzbare Potenzreihen. // Math. Ann., 1922, v. 87, p. 90-111.
4. Bieberbach L. Analytische Fortsetzung. V. 3. Berlin-Göttingen-Heidelberg: SpringerVerlag, 1955.

[^0]: * E-mail: ervand48@mail.ru

