A TRANSCENDENCE RESULT FOR THE EQUATION $D y=a D x$

V. A. ASLANYAN *
Mathematical Institute, University of Oxford, UK

An analogue of the Lindemann-Weierstrass theorem in differential setting for the differential equation $D y=a D x$ is proved, where a is a non-constant parameter.

MSC2010: Primary 12H05, Secondary 12H20.
Keywords: abstract differential equation, Ax-Schanuel theorem, LindemannWeierstrass theorem.

Introduction. Schanuel has conjectured that for any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n}, one has

$$
\begin{equation*}
\operatorname{tr} . \operatorname{deg} \cdot \mathbb{Q} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n, \tag{1}
\end{equation*}
$$

where tr. deg. stands for the transcendence degree of the field extension (see [1]).
It generalizes many results and conjectures in transcendental number theory (in particular the Lindemann-Weierstrass theorem) and is widely open. Schanuel's conjecture is also closely related to the model theory of the complex exponential field $\mathbb{C}_{\text {exp }}=(\mathbb{C} ;+, \cdot, \exp)([2])$.

In [3] Ax proved a differential analogue of Schanuel's conjecture.
Theorem 1 [3]. Let $(K ;+, \cdot, D, 0,1)$ be a differential field of characteristic zero with the field of constants C and let $x_{i}, y_{i} \in K, i=1, \ldots, n$, be such that $D y_{i}=y_{i} D x_{i}$. If tr. deg. ${ }_{C} C(\bar{x}, \bar{y}) \leq n$, then x_{1}, \ldots, x_{n} are linearly dependent over \mathbb{Q} modulo C, i.e. a \mathbb{Q}-linear combination of x_{1}, \ldots, x_{n} is in C.

This is now known as the Ax-Schanuel theorem.
In this paper we will use the ideas of Ax's proof of the above Theorem to establish a transcendence result for the solutions (in a differential field K) of the differential equation

$$
\begin{equation*}
D y=a D x \tag{2}
\end{equation*}
$$

where $a \in K \backslash C$ is a non-constant parameter. We formulate our main result below.

[^0]Denote

$$
A:=\left\{x \in C(a)^{\text {alg }}: \text { there is } y \in C(a)^{\text {alg }} \text { such that } D y=a D x\right\}
$$

where for a field F we denote its algebraic closure by $F^{\text {alg }}$.
Theorem 2. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in K^{2}$ be solutions of the differential equation $D y=a D x$ such that $x_{i} \in C(a)^{\text {alg }}$. Then y_{1}, \ldots, y_{n} are algebraically dependent over $C(a)$ if and only if x_{1}, \ldots, x_{n} are linearly dependent over C modulo A, i.e. some C-linear combination of x_{1}, \ldots, x_{n} is in A.

Note that since we require x_{i} 's to be algebraic over $C(a)$, Theorem 2 is not an analogue of the Ax-Schanuel theorem. However it can be seen as an analogue of the Lindemann-Weierstrass theorem (in differential setting) for the equation $D y=a D x$. Recall that the Lindemann-Weierstrass theorem states that for \mathbb{Q}-linearly independent complex algebraic numbers $\alpha_{1}, \ldots, \alpha_{n}$ the exponentials $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent over \mathbb{Q} (this obviously follows from Schanuel's conjecture).

We will give some preliminaries on differential fields and present main ideas of Ax's method in the next section. Later, in the paper, they will be used to prove Theorem 2.

Preliminaries on Differential Fields and Ax's Method. First we present basic definitions and facts about differential fields. For more details we refer the reader to [4-7].

We assume all rings that we deal with are commutative rings with identity and have characteristic zero. A derivation of a ring R is a map $D: R \rightarrow R$ such that $\forall x, y D(x+y)=D x+D y$ and $\forall x, y D(x y)=x D y+y D x$. A differential ring is a ring equipped with a derivation.

For a differential field K the kernel of the derivation, that is, the set $C_{K}:=\{x \in K: D x=0\}$ is a relatively algebraically closed subfield of K. It is called the field of constants of K.

If R is a differential ring, then the ring of differential polynomials over R is a differential ring extension defined as $R\{X\}=R\left[X, D(X), D^{2}(X), \ldots\right]$ with $D\left(D^{n}(X)\right)=D^{n+1}(X)$. Thus, differential polynomials are of the form $P\left(X, D X, \ldots, D^{n} X\right)$, where $P\left(X_{0}, \ldots, X_{n}\right) \in R\left[X_{0}, \ldots, X_{n}\right]$ is an algebraic polynomial over R. We can also consider differential polynomials in several variables, which are defined analogously. If $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is such a polynomial, then the equation $f=0$ is a differential equation over the given differential ring R. A tuple $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ is a solution to that equation if $f\left(a_{1}, \ldots, a_{n}\right)=0$.

Now we present the main ideas of Ax's proof (see [3]), which will be used in the next section. We follow [8] and [9] in formulating and proving the facts below.

Let us start with the definition of a more general notion of derivation. Given a field K of characteristic 0 and a K-vector space V, a map $d: K \rightarrow V$ is called a derivation, if it is additive and satisfies Leibniz's rule, i.e.

$$
\begin{aligned}
& d(x+y)=d x+d y \\
& d(x y)=x d y+y d x
\end{aligned}
$$

Let $C \subseteq K$ be a subfield.
Lemmal. There is a K-vector space Ω and a derivation $d: K \rightarrow \Omega$ such that $C \subseteq \operatorname{ker}(d)$ and the following universal property holds: if V is a K-vector space and $\delta: K \rightarrow V$ is a derivation with $\left.\delta\right|_{C}=0$, then there is a unique K-linear map $\xi: \Omega \rightarrow V$ such that the following diagram commutes:

To see this we just need to take the abstract K-vector space generated by the set $\{d x: x \in K\}$ (where $d x$ should be regarded just as a symbol for every $x \in K$) and quotient it out by relations

$$
\begin{equation*}
d(x+y)=d x+d y, d(x y)=x d y+y d x, d c=0 \tag{*}
\end{equation*}
$$

for any $c \in C$. We define the map ξ in a natural way, i.e. $\xi(d x)=\boldsymbol{\delta}(x)$ and then extend this to Ω by linearity. We need to check that this map is well-defined, i.e. it respects the above relations, which is straightforward.

The elements of Ω are called abstract differential forms on K over C (or Kähler differentials). The space Ω can be naturally embedded in the dual space of the vector space $\operatorname{Der}(K / C)$ of derivations of K over C. More precisely, if $\omega=d x \in \Omega$ is a differential form, then it can be considered as a linear functional $\omega: \operatorname{Der}(K / C) \rightarrow K$ defined by $\omega: \delta \mapsto \delta x$. One extends this definition to an arbitrary element of Ω using linearity. Thus differential forms can be thought of as linear forms on the vector space $\operatorname{Der}(K / C)$. If tr. deg. ${ }_{C}(K)$ is finite, then of course Ω is isomorphic to $\operatorname{Der}(K / C)^{*}$. In any case Ω^{*} is isomorphic to $\operatorname{Der}(K / C)$, which follows from the universal property of d.

If we want to emphasize that Ω is the vector space of differential forms on K over C, then we may write $\Omega_{K / C}$. But when it is clear from the context, which fields we refer to, we will omit the subscript K / C. Note that for a polynomial $P(X) \in C[X]$ one has $d(P(x))=P^{\prime}(x) d x$.

The importance of this universal vector space is that it allows us to translate algebraic dependence into linear dependence.

Remark. If $D: K \rightarrow K$ is a derivation, then it is easy to see that for a transcendental element t one can extend D to a derivation on $K(t)$ by defining $D(t)$ arbitrarily. Moreover, one can extend a derivation to an algebraic extension E. Indeed, if x is algebraic over K, then let $P \in K[X]$ be its minimal polynomial over K. The equation $P(x)=0$ forces us to define $D x$ in a natural way. That is, $D x$ should be defined from the equality $P^{D}(x)+P^{\prime}(x) \cdot D x=0$, where P^{D} is the polynomial obtained from P by differentiating its coefficients. Since we are in characteristic zero, $P^{\prime}(X)$ is a non-zero polynomial with lower degree than P and, therefore, it does not vanish at x.

Lemma 2. Arbitrary elements $x_{1}, \ldots, x_{n} \in K$ are algebraically dependent over C if and only if $d x_{1}, \ldots, d x_{n}$ are linearly dependent over K.

Proof. Suppose $x_{1}, \ldots, x_{n} \in K$ are algebraically dependent over C. That is, there is a polynomial $P\left(X_{1}, \ldots, X_{n}\right) \in C\left[X_{1}, \ldots, X_{n}\right]$ such that $P(\bar{x})=0$. We can choose P to be of minimal degree with this property. Then $\sum \frac{\partial P}{\partial X_{i}}(\bar{x}) d x_{i}=0$. Since $\frac{\partial P}{\partial X_{i}}$ does not vanish at $\bar{x}, d x_{1}, \ldots, d x_{n}$ are linearly dependent over K.

Conversely let x_{1}, \ldots, x_{n} be algebraically independent over C. By the Remark above, we can define derivations $D_{i}: K \rightarrow K$ such that D_{i} vanishes on C and $D_{i}\left(x_{i}\right)=1, D_{i}\left(x_{j}\right)=0$ for $i \neq j$. By the universal property of Ω, we find K-linear maps $\xi_{i}: \Omega \rightarrow K$ such that $\xi_{i} \circ d=D_{i}$.

If $f_{i} \in K$ with $\sum_{i} f_{i} d x_{i}=0$, then applying ξ_{i} we see that $f_{i}=0$.
We conclude immediately that $1 \cdot \operatorname{dim}_{K}(\Omega)=\operatorname{tr} . \operatorname{deg} \cdot{ }_{C}(K)$, where 1 . dim stands for the linear dimension of a vector space. In particular, an element $c \in K$ is algebraic over C if and only if $d c=0$. Thus $\operatorname{ker}(d)$ is equal to the relative algebraic closure of C in K.

From now on we assume K is a differential field with a derivation D and constant field C. Let $\Omega=\Omega_{K / C}$ and $\xi: \Omega \rightarrow K$ be a linear map with $\xi(d x)=D x$. In this case $\operatorname{ker}(d)=C$.

We define the Lie derivative $L_{D}: \Omega \rightarrow \Omega$ as follows:

$$
L_{D}\left(\sum f_{i} d x_{i}\right)=\sum D f_{i} \cdot d x_{i}+f_{i} \cdot d\left(D x_{i}\right)
$$

It is easy to check that this map is well defined, i.e. it respects the relations $(*)$.
Also, one can easily verify the following properties of the Lie derivative L_{D} :

$$
\begin{aligned}
& L_{D}\left(\omega_{1}+\omega_{2}\right)=L_{D}\left(\omega_{1}\right)+L_{D}\left(\omega_{2}\right) \text { for } \omega_{1}, \omega_{2} \in \Omega \\
& L_{D}(f \omega)=D(f) \omega+f L_{D}(\omega) \text { for } \omega \in \Omega, f \in K \\
& L_{D}(d x)=d(D x) \text { for } x \in K
\end{aligned}
$$

The following result allows us to translate linear dependence of vectors from Ω over K into linear dependence over C.

Lemmaj. Let $\omega_{i} \in \Omega$ be linearly dependent over K and $L_{D}\left(\omega_{i}\right)=0$ for $i=1, \ldots, n$. Then $\omega_{1}, \ldots, \omega_{n}$ are C-linearly dependent.

Proof. Suppose $s \sum_{i} f_{i} \omega_{i}=0$ for some $f_{i} \in K$. Without loss of generality we may assume that this linear dependence is minimal, that is, a maximal number of f_{1}, \ldots, f_{n} are zero. Dividing by a non-zero coefficient we may also assume that one of them, say f_{1}, is equal to 1 .

Apply L_{D} to that linear combination. We have

$$
0=L_{D}\left(\sum f_{i} \omega_{i}\right)=\sum\left(D\left(f_{i}\right) \omega_{i}+f_{i} L_{D}\left(\omega_{i}\right)\right)=\sum D\left(f_{i}\right) \omega_{i} .
$$

Since $D\left(f_{1}\right)=0$, this new linear combination contains one more zero than the initial one. Hence, all $D\left(f_{i}\right)$'s must be equal to zero. This shows that f_{i} 's are constants, and we are done.

Proof of Theorem 2. In this section we will prove Theorem 2. But first let us make some observations, which will make the choice of the set A clear.

Let (x, y) be a non-constant solution to (2) with tr. deg. C. $C(x, y) \leq 1$. Then for some polynomial $P(X, Y) \in C[X, Y]$ we will have $P(x, y)=0$. We may assume P is of minimal degree with this property. Differentiating this equality, we get

$$
\frac{\partial P}{\partial X}(x, y) \cdot D x+\frac{\partial P}{\partial Y}(x, y) \cdot D y=0
$$

Taking into account the equality $D y=a D x$, we express a as a rational function of x and y (since $D x \neq 0$). That is, $a \in C(x, y)^{\text {alg }}=C(x)^{\text {alg }}=C(y)^{\text {alg }}$. This implies $x, y \in C(a)^{\text {alg }}$. Thus, for just one solution $(x, y), x$ and y will be algebraically dependent over C if and only if they both are in an algebraic dependence with a, again over C.

Therefore,

$$
\begin{aligned}
A & =\left\{x \in C(a)^{\text {alg }}: \text { there is } y \in C(a)^{\text {alg }} \text { such that } D y=a D x\right\}= \\
& =\{x \in K: \text { there is } y \in K \text { with } D y=a D x \text { and tr.deg. } C(x, y) \leq 1\} .
\end{aligned}
$$

We can interpret this as follows. For a solution (x, y) we want the transcendence degree of x, y over C to be 2 . Then A can be thought of as the set of all counterexamples to this, that is, the set of all x, for which the transcendence degree is less than expected.

Proofof Theorem 2. Suppose y_{1}, \ldots, y_{n} are algebraically dependent over $C(a)$. We may assume that $x_{i} \notin C$ for each i. Let

$$
V:=\left\langle d x_{1}, \ldots, d x_{n}, d y_{1}, \ldots, d y_{n}\right\rangle=\left\langle d a, d y_{1}, \ldots, d y_{n}\right\rangle
$$

be the K-linear span of $d x_{1}, \ldots, d x_{n}, d y_{1}, \ldots, d y_{n}$ in $\Omega\left(d x_{1}, \ldots, d x_{n}\right.$ are all in the linear span of $d a$ since $x_{i} \in(C(a))^{\text {alg }}$). Then, by Lemma 2, $1 . \operatorname{dim}_{K} V \leq n$. Consider the differential forms $\omega_{i}:=d y_{i}-a d x_{i} \in V$. The restriction of ξ to V is a linear map, whose image is K and hence has dimension 1 over K. Notice that $\xi\left(\omega_{i}\right)=D y_{i}-a D x_{i}=0$, i.e. each ω_{i} is in the kernel of ξ. The rank-nullity theorem now yields that $1 \cdot \operatorname{dim}_{K}(\operatorname{ker}(\xi))=n-1$ and so $\omega_{1}, \ldots, \omega_{n}$ are linearly dependent over K. Now let us calculate $L_{D}\left(\omega_{i}\right)$. We have

$$
\begin{aligned}
L_{D}\left(\omega_{i}\right) & =d\left(D y_{i}\right)-D a \cdot d x_{i}-a d\left(D x_{i}\right) \\
& =d\left(a D x_{i}\right)-D a \cdot d x_{i}-a d\left(D x_{i}\right) \\
& =a \cdot d\left(D x_{i}\right)+D x_{i} \cdot d a-D a \cdot d x_{i}-a \cdot d\left(D x_{i}\right) \\
& =D x_{i} \cdot d a-D a \cdot d x_{i}=0 .
\end{aligned}
$$

To get the last equality we use the following argument. Since a and x_{i} are algebraically dependent over $C, d a$ and $d x_{i}$ are linearly dependent over K. This means that for some $f \in K$ we have $d x_{i}=f \cdot d a$. Applying ξ we see that $D x_{i}=f \cdot D a$, which implies $D x_{i} \cdot d a-D a \cdot d x_{i}=0$.

Thus, we can apply Lemma 3 , which implies that $\omega_{1}, \ldots, \omega_{n}$ are C-linearly dependent. Let c_{1}, \ldots, c_{n} be constants such that $\sum_{i} c_{i} \omega_{i}=0$. This is equivalent to

$$
d\left(\sum_{i} c_{i} y_{i}\right)=a \cdot d\left(\sum_{i} c_{i} x_{i}\right) .
$$

Denoting $x=\sum_{i} c_{i} x_{i}$ and $y=\sum_{i} c_{i} y_{i}$, we will have $d y=a d x$. Applying ξ, we get $D y=a D x$. That is, (x, y) is a solution to equation (2) and x is a C-linear combination of x_{1}, \ldots, x_{n}. Since $d x$ and $d y$ are linearly dependent, x and y are algebraically dependent over C, which yields $x \in A$. This is the desired result.

The converse is much simpler. Suppose $\sum_{i} c_{i} x_{i} \in A$ for some constants c_{1}, \ldots, c_{n}. Denote $x=\sum_{i} c_{i} x_{i}$ and $y=\sum_{i} c_{i} y_{i}$. The pair (x, y) is a solution to (2) and since $x \in A$, we conclude that $y \in C(a)^{\text {alg }}$. This implies that y_{1}, \ldots, y_{n} are algebraically dependent over $C(a)$.

Received 07.03.2016

REFERENCES

1. Lang S. Introduction to Transcendental Numbers. Berlin: Addison-Wesley Publishing Co., 1966.
2. Zilber B. Pseudo-Exponentiation on Algebraically Closed Fields of Characteristic Zero. // Annals of Pure and Applied Logic, 2004, v. 132, № 1, p. 67-95.
3. Ax.J. On Schanuel's Conjectures. // Annals of Mathematics, 1971, v. 93, p. 252-268.
4. Kolchin E. Differential Algebra and Algebraic Groups. V. 54. NY: Academic Press, 1973.
5. Kaplansky I. An Introduction to Differential Algebra. Publications de l'Institut de Mathematique de l'Universite de Nancago. Paris, 1957.
6. Marker D., Messmer M., Pillay A. Model Theory of Fields, Lecture Notes in Logic. V. 5. Berlin: Springer-Verlag, 1996.
7. Pillay A. Applied Stability Theory. Lecture Notes, Paris, 2003.
8. Marker D. Lecture Notes on Ax's Theorem. Lecture Notes, 1999.
9. Kirby J. The Theory of Exponential Differential Equations. PhD Thesis, University of Oxford, 2006.

[^0]: * E-mail: vahagn.aslanyan@maths.ox.ac.uk

