Mathematics

ON QUASI-UNIVERSAL WALSH SERIES
 $$
\text { IN } L_{[0,1]}^{p}, p \in[1,2]
$$

R. G. MELIKBEKYAN *

Chair of Higher Mathematics, Faculty of Physics YSU, Armenia

Let the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}$, and Walsh system $\left\{W_{k}(x)\right\}_{k=0}^{\infty}$ be given. Then for any $\varepsilon>0$ there exists a measurable set $E \subset[0,1]$ with measure $|E|>1-\varepsilon$ and numbers $\delta_{k}= \pm 1,0$ such that for any $p \in[1,2]$ and each function $f(x) \in L^{p}(E)$ there exists a rearrangement $k \rightarrow \sigma(k)$ such that the series $\sum_{k=1}^{\infty} \delta_{\sigma(k)} a_{\sigma(k)} W_{\sigma(k)}(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.

MSC2010: 42C20.
Keywords: Walsh system, quasi universal series.
Introduction. A series

$$
\begin{equation*}
\sum_{k=1}^{\infty} f_{k}(x),\left\{f_{n}(x)\right\}_{n=1}^{\infty} \in L^{p}[0,1), p \in[1, \infty) \tag{A}
\end{equation*}
$$

is said to be quasi universal in $L^{p}[0,1)$ with respect to rearrangements, if for any $\varepsilon>0$ there exists a measurable set $E \subset[0,1]$ with measure $|E|>1-\varepsilon$ such that for any $p \geq 1$ and each function $f(x) \in L^{p}(E)$ there exists a rearrangement $k \rightarrow \sigma(k)$ such that the series $\sum_{k=1}^{\infty} f_{\sigma}(k)(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.

The question of existence of various types of universal series in the sense of almost everywhere or in measure convergence have been considered in [1-8]. The first trigonometric series universal in the usual sense in the class of all measurable functions for convergence almost everywhere has been constructed by Men'shov [1]. This result was extended by Talalyan [2] to arbitrary orthonormal complete systems. Also was established, that if $\left\{\varphi_{n}(x)\right\}_{n=1}^{\infty}, x \in[0,1]$, is an arbitrary complete orthonormal system, then there exists a series $\sum_{k=1}^{\infty} a_{k} \varphi_{k}(x)$, which is universal with respect

[^0]to the convergence in measure of the partial series in the class of all measurable functions on $[0,1]$ [3].

In [4, 5] the following theorems were proved:
Theorem 1. For any complete orthonormal system $\left\{\varphi_{n}(x)\right\}_{n=1}^{\infty}$ there exists a series $\sum_{k=1}^{\infty} b_{k} \varphi_{k}(x)$ with $\sum_{k=1}^{\infty}\left|b_{k}\right|^{r}<\infty$ for any $r>2$, which is quasi universal in all spaces $L^{p}[0,1]$ for $p \in[1,2)$ simultaneously with respect to both rearrangements and partial series.

Theorem 2. Let the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}$, and the Walsh system $\left\{W_{k}(x)\right\}_{k=0}^{\infty}$ be given. Then there exist numbers $\delta_{k}= \pm 1$ such that the series $\sum_{k=1}^{\infty} \delta_{k} a_{k} W_{k}(x)$ is universal with respect to a.e. convergence of the partial series in the class of all measurable a.e. finite functions on $[0,1]$.

In this paper we prove the following theorem.
Theorem 3. Let the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}, \quad$ and the Walsh system $\left\{W_{k}(x)\right\}_{k=0}^{\infty}$ be given. Then for any $\varepsilon>0$ there exist a measurable set $E \subset[0,1]$ with measure $|E|>1-\varepsilon$ and numbers $\delta_{k}= \pm 1,0$ such that for any $p \in[1,2]$ and each function $f(x) \in L^{p}(E)$ there exists a rearrangement $k \rightarrow \sigma(k)$ such that the series $\sum_{k=1}^{\infty} \delta_{\sigma(k)} a_{\sigma(k)} W_{\sigma(k)}(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.

First we show that for any $p \geq 2(p \geq 1)$ and for any orthonormal (bounded orthonormal) system $\left\{\varphi_{n}(x)\right\}$ there is no series, that is universal either with respect to rearrangements or signs in $L^{p}[0,1]$ (for $p>2$ we assume that $\varphi_{n}(x) \in L^{p}[0,1]$, $n=1,2, \ldots$).

Indeed, if for some $p_{0} \geq 2\left(p_{0} \geq 1\right)$ and for some orthonormal (bounded orthonormal) system $\left\{\varphi_{n}(x)\right\}$ there exists a series $\left(1^{0}\right)$, which is universal in $L_{[0,1]}^{p_{0}}$ with respect to rearrangements, then according to Eq. (A) for $\left(\left|a_{1}\right|+1\right) \varphi_{1}(x)$ there exists a rearrangement $k \rightarrow \sigma(k)$ such that

$$
\lim _{m \rightarrow \infty}\left\|\sum_{k=1}^{m} a_{\sigma(k)} \varphi_{\sigma(k)}(x)-\left(\left|a_{1}\right|+1\right) \varphi_{1}(x)\right\|_{p_{0}}=0
$$

or since $\varphi_{1}(x) \in L^{q_{0}}[0,1]\left(\frac{1}{q_{0}}+\frac{1}{p_{0}}=1\right.$ for $p_{0}>1$ and $q_{0}=\infty$ for $\left.p_{0}=1\right)$, for the first case we have $a_{1}=1+\left|a_{1}\right|$, while for the second case

$$
1+\left|a_{1}\right|=\left\{\begin{array}{lll}
a_{1} & \text { for } & n_{1}=1 \\
0 & \text { for } & n_{1}>1
\end{array}\right.
$$

This contradiction completes the Proof.
Proof of Basic Lemmas. We shall use the following lemma of the paper [5].
Lemma 1. Let the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}$, the numbers $n_{0}>1\left(n_{0} \in \mathbb{N}\right), \quad \gamma \neq 0, \varepsilon>0, \delta>0$ and the interval of the form $\Delta=\Delta_{m}^{(k)}=\left[\frac{k-1}{2^{m}}, \frac{k}{2^{m}}\right), \quad k \in\left[1,2^{m}\right]$, be given. Then, there exist a measurable set
$E \subset \Delta$ and polynomials $H(x), Q(x)$ in Walsh system of the form

$$
H(x)=\sum_{k=N_{0}}^{N} b_{k} W_{k}(x), \quad Q(x)=\sum_{k=N_{0}}^{N} \delta_{k} a_{k} W_{k}(x)
$$

satisfying the conditions:
a) $\delta_{k}= \pm 1,0$;
b) $|E|=|\Delta|(1-\varepsilon)$;
c) $H(x)=0, x \in[0,1] \backslash \Delta$;
d) $|Q(x)-\gamma|<\delta, x \in E$;
e) $\max _{N_{0} \leq n<N}\left|\sum_{k=N_{0}}^{n} b_{k} W_{k}(x)\right|<C \frac{|\gamma|}{\varepsilon}+\delta, x \in \Delta(C$ is an absolute constant $)$;
f) $\int_{0}^{1}|Q(x)-H(x)|^{2} d x<\varepsilon \delta^{2}|\Delta|$;
g) $\max _{N_{0} \leq n<N_{v}}\left|\sum_{k=N_{0}}^{n} b_{k} W_{k}(x)\right|<\delta, x \in[0,1] \backslash \Delta$.

Using Lemma 1, we prove the following lemma, which is the basic tool in the Proof of Theorem 3.

Lemma 2. Let the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}$, be given. Then, for any numbers $N_{0} \in \mathbb{N}, 0<\delta, \varepsilon<1, p \in[1,2]$ and for each polynomial $f(x)$ in Walsh system with $|f|>0$ one can find a measurable set $E \subset[0,1]$ and a polynomial in Walsh system of the form

$$
Q(x)=\sum_{k=N_{0}}^{N} \delta_{k} a_{k} W_{k}(x) \text { when } \delta_{k}= \pm 1
$$

satisfying the conditions:

1) $|E|=1-\varepsilon$;
2) $\left(\int_{E}|Q(x)-f(x)|^{2} d x\right)^{1 / 2}<\varepsilon$;
3) $\max _{N_{0} \leq n<N}\left(\int_{E}\left|\sum_{k=N_{0}}^{n} \delta_{k} a_{k} W_{k}(x)\right|^{p} d x\right)^{1 / p} \leq\left(\int_{E}|f(x)|^{p} d x\right)^{1 / p}+\varepsilon, \forall p \in[1,2]$.

Proof of Lemma 2. Let

$$
\begin{equation*}
f(x)=\sum_{v=1}^{\mu_{0}} \gamma_{v} \chi_{\Delta_{v}}(x),[0,1)=\bigcup_{v=1}^{\mu_{0}} \Delta_{v} \tag{1}
\end{equation*}
$$

where $\Delta_{v}, v=1,2, \ldots, \mu_{0}$, are disjoint diadic intervals $\left(\chi_{\Delta}\right.$ is characteristic function of Δ). We choose a number $\beta>0$ such that

$$
\begin{equation*}
\max \left\{\beta, \beta \sum_{v=1}^{\mu_{0}}\left|\Delta_{v}\right|^{1 / 2}\right\}<\min \left\{\frac{\delta}{4} ; C \frac{\min |f|}{\varepsilon} ;\left(\int_{0}^{1}|f|^{p} d x\right)^{1 / p}\right\} \tag{2}
\end{equation*}
$$

Consecutively applying Lemma 1 , one can define sets $E_{V} \subset \Delta_{v}$ for $1 \leq v \leq \mu_{0}$ and polynomials

$$
\begin{gather*}
H_{v}(x)=\sum_{k=N_{v-1}}^{N_{v}-1} b_{k} W_{k}(x), \tag{3}\\
Q_{v}(x)=\sum_{k=N_{v-1}}^{N_{v}-1} \delta_{k} a_{k} W_{k}(x), \delta_{k}= \pm 1, \tag{4}
\end{gather*}
$$

where $N_{0}=n_{0}$, satisfying the conditions:

$$
\begin{gather*}
\left|E_{v}\right|=\left|\Delta_{v}\right|(1-\varepsilon), \tag{5}\\
H_{v}(x)=0, x \in[0,1] \backslash \Delta_{v}, \tag{6}\\
\left|H_{v}(x)-\gamma_{v}\right|<\beta, x \in E_{v}, \tag{7}\\
\max _{N_{v-1} \leq n<N_{v}}\left|\sum_{k=N_{v-1}}^{n} b_{k} W_{k}(x)\right|<C \frac{\left|\gamma_{v}\right|}{\varepsilon}+\beta, x \in \Delta_{v}(C>1), \tag{8}
\end{gather*}
$$

C is an absolute constant,

$$
\begin{gather*}
\int_{0}^{1}\left|Q_{v}(x)-H_{v}(x)\right|^{2} d x<\varepsilon \beta^{2}\left|\Delta_{v}\right| \tag{9}\\
\max _{N_{v-1} \leq n<N_{v}}\left|\sum_{k=N_{v-1}}^{n} b_{k} W_{k}(x)\right|<\beta, x \in[0,1] \backslash \Delta_{v} . \tag{10}
\end{gather*}
$$

We put

$$
\begin{gather*}
E=\bigcup_{v=1}^{\mu_{0}} E_{v} \tag{11}\\
Q(x)=\sum_{v=1}^{\mu_{0}} Q_{v}(x)=\sum_{v=1}^{\mu_{0}} \sum_{k=N_{v-1}}^{N_{v}-1} \delta_{k} a_{k} W_{k}(x)=\sum_{k=N_{0}}^{N} \delta_{k} a_{k} W_{k}(x), \tag{12}\\
H(x)=\sum_{v=1}^{\mu_{0}} H_{v}(x)=\sum_{v=1}^{\mu_{0}} \sum_{k=N_{v-1}}^{N_{v}-1} a_{k} W_{k}(x)=\sum_{k=N_{0}}^{N} a_{k} W_{k}(x) . \tag{13}
\end{gather*}
$$

From (5) and (11) it follows that $|E|=1-\varepsilon$. Using equations (3), (4), (12), (13) and (9), we have

$$
\begin{gather*}
\left(\int_{0}^{1}|Q(x)-H(x)|^{2} d x\right)^{1 / 2} \leq \sum_{v=1}^{\mu_{0}}\left(\int_{0}^{1}\left|Q_{v}(x)-H_{v}(x)\right|^{2} d x\right)^{1 / 2} \leq \\
\leq \beta \sum_{v=1}^{\mu_{0}}\left(\varepsilon\left|\Delta_{v}\right|\right)^{1 / 2}<\min \left\{\frac{\delta}{4} ;\left(\int_{0}^{1}|f|^{p} d x\right)^{1 / p}\right\} \tag{14}
\end{gather*}
$$

Then, according to (1), (2) and (6), (7), (9), we get

$$
\begin{gather*}
\left(\int_{E}|H(x)-f(x)|^{2} d x\right)^{1 / 2} \leq \sum_{v=1}^{\mu_{0}}\left(\int_{E_{v}}\left|H_{v}(x)-\gamma_{v}\right|^{2} d x\right)^{1 / 2} \leq \\
\leq \sum_{v=1}^{\mu_{0}}\left(\int_{E_{V}}\left|H_{v}(x)-Q_{v}(x)\right|^{2} d x\right)^{1 / 2}+\sum_{v=1}^{\mu_{0}}\left(\int_{E_{V}}\left|Q_{v}(x)-\gamma_{v}\right|^{2} d x\right)^{1 / 2}< \tag{15}\\
<\beta \sum_{v=1}^{\mu_{0}}\left(\varepsilon\left|\Delta_{v}\right|\right)^{1 / 2}+\beta \sum_{v=1}^{\mu_{0}}\left|\Delta_{v}\right|^{1 / 2}<\frac{\delta}{2}
\end{gather*}
$$

From this and from relations (12)-(14) we conclude that

$$
\begin{aligned}
\left(\int_{E} \mid Q(x)-\right. & \left.\left.f(x)\right|^{2} d x\right)^{1 / 2} \leq\left(\int_{0}^{1}|Q(x)-H(x)|^{2} d x\right)^{1 / 2}+ \\
& +\left(\int_{E}|H(x)-f(x)|^{2} d x\right)^{1 / 2}<\delta
\end{aligned}
$$

which proves the condition 3) of the Lemma.
If $n \in\left[N_{0}, N\right]$, then for some $1 \leq v \leq \mu_{0}$ and $n \in\left[N_{v-1}, N_{v}\right)$ from (14) we get

$$
\begin{equation*}
\sum_{k=N_{0}}^{n} \delta_{k} a_{k} W_{k}(x)=\sum_{j=1}^{v-1} \sum_{k=N_{j-1}}^{N_{j}-1} \delta_{k} a_{k} W_{k}(x)+\sum_{k=N_{v-1}}^{n} \delta_{k} a_{k} W_{k}(x) \tag{16}
\end{equation*}
$$

From this and (4), (6), (8), (13), (14), for any $p \in[1,2]$ we obtain

$$
\begin{aligned}
& \left(\int_{E}\left|\sum_{k=N_{0}}^{n} \delta_{k} a_{k} W_{k}(x)\right|^{p} d x\right)^{1 / p} \leq \\
& \leq \sum_{J=1}^{v-1}\left(\int_{E}\left|Q_{j}(x)-H_{j}(x)\right|^{p} d x\right)^{1 / p}+\sum_{j=1}^{v-1}\left(\int_{E}\left|H_{j}(x)\right|^{p} d x\right)^{1 / p}+ \\
& +\left(\int_{E}\left|\sum_{k=N_{v-1}}^{n}\left(\delta_{k} a_{k}-a_{k}\right) W_{k}(x)\right|^{p} d x\right)^{1 / p}+\left(\int_{E}\left|\sum_{k=N_{v-1}}^{n} a_{k} W_{k}(x)\right|^{p} d x\right)^{1 / p} \leq \\
& \leq \beta \sum_{J=1}^{v-1}\left(\varepsilon\left|\Delta_{v}\right|\right)^{1 / 2}+2\left(\sum_{v=1}^{\mu_{0}}\left(\left|\gamma_{v}+\beta\right|\right)^{p}\left|\Delta_{v}\right|\right)^{1 / p}+\left(C \frac{\left|\gamma_{v}\right|}{\varepsilon}+\beta\right)\left(\left|\Delta_{v}\right|\right)^{1 / p} \leq \\
& \text { Proof of Theorem 3. Let }
\end{aligned}
$$

$$
\begin{equation*}
\left\{f_{k}(x)\right\}_{k=1}^{\infty} \tag{17}
\end{equation*}
$$

be the system of all algebraic polynomials with rational coefficients and the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}, a_{k} \searrow 0$ with $\left\{a_{k}\right\}_{k=1}^{\infty} \notin l_{2}$, and $\varepsilon \in(0,1)$ be given.

Applying Lemma 2 when $f=f_{n}$ from (17), we determine a sequence of measurable sets $\left\{E_{n}\right\}$ and a sequence of polynomials

$$
\begin{align*}
Q_{n}(x)= & \sum_{k=m_{n-1}}^{m_{n}-1} \delta_{k} a_{k} W_{k}(x), \delta_{k}= \pm 1,0, m_{0}=2, m_{n}>m_{n-1} \tag{18}\\
& \left|E_{n}\right|>1-2^{-2 n}, \quad n \geq 1 \tag{19}\\
& \left(\int_{E_{n}}\left|Q_{n}(x)-f_{n}(x)\right|^{2} d x\right)^{1 / 2}<2^{-4 n} \tag{20}\\
& \max _{m_{n-1} \leq s \leq m_{n}}\left[\int_{E_{n}}\left|\sum_{k=m_{n-1}}^{s} \delta_{k} a_{k} W_{k}(x)\right|^{p} d x\right]^{1 / p} \leq \\
\leq & \left(\int_{E_{n}}\left|f_{n}(x)\right|^{p} d x\right)^{1 / p}+2^{-2 n}, p \in[1,2] \tag{21}
\end{align*}
$$

We put

$$
\begin{align*}
\sum_{k=1}^{\infty} \delta_{k} a_{k} W_{k}(x) & =\sum_{n=1}^{\infty}\left(\sum_{k=m_{n-1}}^{m_{n}-1} \delta_{k} a_{k} W_{k}(x)\right) \tag{22}\\
E & =\bigcap_{V=n_{0}}^{\infty} E_{V} \tag{23}
\end{align*}
$$

where n_{0} is the integer part of $\log _{1 / 2} \varepsilon$. From (19) and (23) we get $|E|>1-\varepsilon$.
Let $f(x) \in L^{p}(E), p \in[1,2]$. Consider a function $f_{n_{1}}(x)\left(n_{1}>n_{0}\right)$ from (2) satisfying

$$
\left\|f(x)-f_{n_{1}}(x)\right\|_{L^{p}(E)}=\left(\int_{E}\left|f(x)-f_{n_{1}}(x)\right|^{p} d x\right)^{1 / p}<2^{-4(1+1)}
$$

From this and (20)

$$
\left\|f(x)-\left[Q_{n_{1}}(x)+a_{1} W_{1}(x)\right]\right\|_{L^{p_{1}}(E)}<2^{-2 n_{1}}+2^{-8}+a_{1}
$$

Assume that the members

$$
\left\{\left\{\delta_{j}= \pm 1, k_{j}\right\}_{j=m_{n_{s}-1}}^{m_{n_{s}-1}}, q_{s}\right\}_{s=1}^{v}
$$

and functions

$$
\left\{\delta_{k} a_{k} W_{k}(x)\right\}_{k=m_{n_{s}-1}}^{m_{n_{s}}-1}, a_{q_{s}} W_{q_{s}}(x), s=1,2, \ldots, v
$$

of the series (22) or (23) are chosen to satisfy

$$
\begin{gather*}
q_{v}=\min \left\{\bigcup_{s=1}^{v}\{k\}_{k=m_{n_{s}-1}}^{m_{n_{s}}-1}\right\} \cup\left\{q_{1}, \ldots, q_{v-1}\right\} . \\
\left\|f(x)-\sum_{j=1}^{v}\left[Q_{n_{j}}(x)+a_{q_{j}} W_{q_{j}}(x)\right]\right\|_{L^{p}(E)} \leq 2^{-2 n_{v}}+2^{-4(v+1)}+a_{s_{v}} \tag{24}
\end{gather*}
$$

$$
\begin{equation*}
\max _{m_{n_{v}-1} \leq m \leq m_{n_{v}}}\left\|\sum_{k=m_{n_{v}-1}}^{m} \delta_{j} a_{k} W_{k}(x)\right\|_{L^{p}(E)}<2^{-v}+a_{q_{v}}, \forall p \in[1,2] . \tag{25}
\end{equation*}
$$

We choose a natural number $n_{v+1}>n_{v}$ and a function $f_{n_{v+1}}(x)$ from (2) satisfying

$$
\left\|f_{n_{v+1}}(x)-f(x)+\sum_{j=1}^{v}\left[Q_{n_{j}}(x)+a_{q_{j}} W_{q_{j}}(x)\right]\right\|_{L^{p}(E)}<2^{-4(v+1)}
$$

From this and from (25) we obtain

$$
\left\|f_{n_{v+1}}(x)\right\|_{L^{p}(E)} \leq 2^{-2(v+1)}+a_{q_{v}} .
$$

Therefore, by (18), (21) and (23) we have

$$
\begin{gather*}
\max _{m_{n_{v+1}-1} \leq N \leq m_{n_{v+1}}}\left\|\sum_{k=m_{n_{v+1}-1}}^{N} \delta_{k} a_{k} W_{k}(x)\right\|_{L^{p}(E)}<2^{-(v+1)}+a_{q_{v}}, \tag{26}\\
\left\|Q_{n_{v+1}}(x)-f(x)+\sum_{j=1}^{v}\left[Q_{n_{j}}(x)+a_{q_{j}} W_{q_{j}}(x)\right]\right\|_{L^{p}(E)}<2^{-4(v+1)}+2^{-4 n_{v+1}} . \tag{27}
\end{gather*}
$$

After the selection of functions (see (18) and (23)) we choose

$$
q_{v+1}=\min \left\{\bigcup_{s=1}^{v+1}\{k\}_{k=m_{n_{s}-1}}^{m_{n_{s}}-1}\right\} \cup\left\{q_{1}, \ldots, q_{v}\right\}
$$

By (27) we obtain

$$
\begin{equation*}
\left\|f(x)-\sum_{j=1}^{v+1}\left[Q_{n_{j}}(x)+a_{q_{v+1}} W_{q_{v+1}}(x)\right]\right\|_{L^{p_{v+1}(E)}} \leq 2^{-2(v+1)}+a_{q_{v+1}} \tag{28}
\end{equation*}
$$

Thus, by induction from (22) we get some rearranged series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \delta_{\sigma(k)} a_{\sigma(k)} W_{\sigma(k)}(x)=\sum_{s=1}^{\infty}\left(\sum_{k=m_{n_{s}-1}}^{m_{n_{s}}-1} \delta_{k} a_{k} W_{k}(x)+a_{q_{s}} W_{q_{s}}(x)\right) \tag{29}
\end{equation*}
$$

whose terms satisfy (25) and (26) for all $v>1$. This together with (26)-(28) implies, that the series (29) converges to $f(x)$ in any norm $L^{p}(E), p \geq 1$, i.e. the series (22) is quasi universal in $L_{[0,1]}^{p}$ with respect to the rearrangements.

REFERENCES

1. Men'shov D.E. On the Partial Sums of Trigonometric Series. // Mat. Sbornik, 1947, v. 20, № 2, p. 197-238 (in Russian).
2. Talalyan A.A. On the Convergence Almost Everywhere of the Subsequences of Partial Sums of General Orthogonal Series. // Izv. AN Arm. SSR. Matematika, 1975, v. 10, № 3, p. 17-34 (in Russian).
3. Talalyan A.A. Representation of Measurable Functions by Series. // UMN, 1960, v. 15, № 5, p. 567-604 (in Russian).
4. Grigorian M.G. On the Representation of Functions by Orthogonal Series in Weighted L^{p} Spaces. // Studia Math., 1999, v. 134, № 3, p. 207-216.
5. Gevorkyan G.G., Navasardyan K.A. On the Walsh Series with Monotone Coeffisients. // Izv. RAN, Math., 1999, v. 63.2.1, p. 41-60.
6. Grigorian M.G. On the Systems Universal in $L^{p}[0,1], 1 \leq p<2$. // Izv. Vuzov. Matematika, 2000, v. 456, № 5, p. 19-22.
7. Grigorian M.G. Universal or Quasi Universal in $L_{[0,1]}^{p}$ Orthogonal Series. // Journal of Contemporary Mathematical Analysis, 2000, v. 35, № 4, p. 44-64.
8. Navasardyan K.A. On the Walsh Series with Monotone Coeffisients. // Izv. NAN Armenia, 2007, v. 42, № 5, p. 51-64.

[^0]: * E-mail: melikbekyan@yahoo.com

