ON THE MINIMAL NUMBER OF NODES UNIQUELY DETERMINING ALGEBRAIC CURVES

H. A. HAKOPIAN * S. Z. TOROYAN **
Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

It is well-known that the number of n-independent nodes determining uniquely the curve of degree n passing through them equals to $N-1$, where $N=\frac{1}{2}(n+1)(n+2)$. It was proved in [1], that the minimal number of n-independent nodes determining uniquely the curve of degree $n-1$ equals to $N-4$. The paper also posed a conjecture concerning the analogous problem for general degree $k \leq n$. In the present paper the conjecture is proved, establishing that the minimal number of n-independent nodes determining uniquely the curve of degree $k \leq n$ equals to $\frac{(k-1)(2 n+4-k)}{2}+2$.

MSC2010: 41A05; 14H50.
Keywords: polynomial interpolation, poised, independent nodes, algebraic curves.

Introduction. Denote the space of all bivariate polynomials of total degree $\leq n$ by Π_{n} :

$$
\Pi_{n}=\left\{\sum_{i+j \leq n} a_{i j} x^{i} y^{j}\right\}
$$

We have

$$
N:=N_{n}:=\operatorname{dim} \Pi_{n}=\binom{n+2}{2}
$$

Consider a set of s distinct nodes

$$
X_{s}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{s}, y_{s}\right)\right\}
$$

The problem of finding a polynomial $p \in \Pi_{n}$, which satisfies the conditions

$$
\begin{equation*}
p\left(x_{i}, y_{i}\right)=c_{i}, \quad i=1, \ldots, s \tag{1}
\end{equation*}
$$

[^0]is called interpolation problem.
A polynomial $p \in \Pi_{n}$ is called an n-fundamental polynomial for a node $A=\left(x_{k}, y_{k}\right) \in X_{s}$ if
$$
p\left(x_{i}, y_{i}\right)=\delta_{i k}, i=1, \ldots, s,
$$
where δ is the Kronecker symbol. We denote this fundamental polynomial by $p_{k}^{\star}=p_{A}^{\star}=p_{A, \chi_{s}}^{\star}$. Sometimes we call fundamental also a polynomial that vanishes at all the nodes of X_{s}, but one, since it is a nonzero constant times a fundamental polynomial.

Next, let us consider an important concept of n-independence (see $[2,3]$).
Definition 1. A set of nodes x is called n-independent, if all its nodes have n-fundamental polynomials. Otherwise, if a node has no n-fundamental polynomial, then X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary condition of n-independence of X_{s} is $s \leq N$.

Suppose a node set X_{s} is n-independent. Then, by the Lagrange formula, we obtain a polynomial $p \in \Pi_{n}$ satisfying the interpolation conditions (1):

$$
p=\sum_{i=1}^{s} c_{i} p_{i}^{\star}
$$

In view of this we readily get that the node set X_{s} is n-independent if and only if the interpolating problem (1) is solvable, that means for any data $\left(c_{1}, \ldots, c_{s}\right)$ there is a polynomial $p \in \Pi_{n}$ (not necessarily unique) satisfying the interpolation conditions (1).

Definition 2. The interpolation problem with a set of nodes X_{s} and Π_{n} is called n-poised, if for any data $\left(c_{1}, \ldots, c_{s}\right)$, there is a unique polynomial $p \in \Pi_{n}$ satisfying the interpolation conditions (1).

A necessary condition of n-poisedness of \mathcal{X}_{s} is $s=N$.
For node sets of cardinality N we have the following
Proposition 1. A set of nodes X_{N} is n-poised, if and only if

$$
p \in \Pi_{n} \text { and }\left.p\right|_{x_{N}}=0 \quad \Longrightarrow \quad p=0
$$

Thus X_{N} is n-poised if and only if it is n-independent.
Evidently, any subset of n-poised set is n-independent. According to the next lemma, any n-independent set is a subset of some n-poised set (see, e.g., [4], Lemma 2.1).

Lemma 1. Any n-independent set X_{s} with $s<N$ can be extended to a n-poised set.

Below a well-known construction of n-poised set is described (see [5,6]).
Definition 3. A set of $N=1+\cdots+(n+1)$ nodes is called BerzolariRadon set for degree n or briefly $B R_{n}$ set, if there exist lines $l_{1}, l_{2}, \ldots, l_{n+1}$ such that the sets $l_{1}, l_{2} \backslash l_{1}, l_{3} \backslash\left(l_{1} \cup l_{2}\right), \ldots, l_{n+1} \backslash\left(l_{1} \cup \cdots \cup l_{n}\right)$ contain exactly $(n+1), n, n-1, \ldots, 1$ nodes respectively.

Algebraic curve in plane is the zero set of some bivariate polynomial of degree at least 1 . The same letter, say p, is used to denote the polynomial $p \in \Pi_{k} \backslash \Pi_{k-1}$ and the corresponding curve p of degree k defined by the equation $p(x, y)=0$.

According to the following well-known statement, there are no more than $n+1$ number of n-independent points in any line.

Proposition 2. Assume that l is a line and X_{n+1} is any subset of l containing $n+1$ points. Then we have that

$$
p \in \Pi_{n} \quad \text { and }\left.\quad p\right|_{x_{n+1}}=0 \Rightarrow \quad p=l r, \text { where } r \in \Pi_{n-1}
$$

Denote

$$
d:=d(n, k):=N_{n}-N_{n-k}=k(2 n+3-k) / 2 .
$$

The following is a generalization of Proposition 2.
Proposition 3. ([7], Prop. 3.1). Let q be an algebraic curve of degree $k \leq n$ without multiple components. Then we have:
i) any subset of q containing more than $d(n, k)$ nodes is n-dependent;
ii) any subset X_{d} of q containing exactly $d(n, k)$ nodes is n-independent if and only if the following condition holds:

$$
p \in \Pi_{n} \quad \text { and } \quad p \mid x_{d}=0 \Rightarrow p=q r, \text { where } r \in \Pi_{n-k}
$$

Suppose that X is an n-poised set of nodes and q is an algebraic curve of degree $k \leq n$. Then, of course, any subset of X is n-independent, too. Therefore, according to Proposition 3, i), at most $d(n, k)$ nodes of X can lie on the curve q. Let us mention that a special case of this when q is a set of k lines is proved in [8].

This motivates the following definition (see [7], Def. 3.1).
Definition 4. Given an n-independent set of nodes X_{s} with $s \geq d(n, k)$. A curve of degree $k \leq n$ passing through $d(n, k)$ points of X_{s} is called maximal for X_{s}.

In view of Propositions 2 and 3, any set of $n+1$ nodes located in a line is n-independent. Note that a maximal line, as a line passing through $n+1$ nodes, is defined in [9].

The following lemmas (see [3], Proposition 1.10, Lemma 2.2) will be needed in the sequel.

Lemma 2. The following two conditions are equivalent:
i) there is a k-poised subset of a set X;
ii) there is no algebraic curve of degree k passing through all the points of \mathcal{X}.

Lemma 3. Suppose that a node set X is n-independent and a node $A \notin X$ has a n-fundamental polynomial with respect to the set $\mathcal{X} \cup\{A\}$. Then the last node set is n-independent too.

Denote the linear space of polynomials of total degree $\leq n$ vanishing on X by

$$
\mathcal{P}_{n, x}=\left\{p \in \Pi_{n}:\left.p\right|_{x}=0\right\}
$$

The following is well-known (see, e.g., [3]).
Proposition 4. For any node set X we have

$$
\operatorname{dim} \mathcal{P}_{n, x} \geq N-\# X
$$

Moreover, equality takes place here if and only if the set X is n-independent.

From here one can readily get (see [10], Corollary 2.4).
Corollary 1. Let y be a maximal n-independent subset of X, i.e., $y \subset \mathcal{X}$ is n-independent and $y \cup\{A\}$ is n-dependent for any $A \in X \backslash y$. Then we have that

$$
\begin{equation*}
\mathcal{P}_{n, y}=\mathcal{P}_{n, x} \tag{2}
\end{equation*}
$$

Proof. We have $\mathcal{P}_{n, x} \subset \mathcal{P}_{n, y}$, since $\mathcal{y} \subset \mathcal{X}$. Now suppose $p \in \Pi_{n},\left.p\right|_{y}=0$ and A is any node of X, we will get that $\mathcal{Y} \cup\{A\}$ is dependent and, therefore, in view of Lemma 3, we get $\left.p\right|_{A}=0$.

From (2) and Proposition 4 (part "moreover"), we have

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{n, x}=N-\# y \tag{3}
\end{equation*}
$$

where y is any maximal n-independent subset of x. Thus all the maximal n-independent subsets of X have the same cardinality, which is called the Hilbert n-function of \mathcal{X} and is denoted by $\mathcal{H}_{n}(X)$. Hence, according to (3), we have

$$
\operatorname{dim} \mathcal{P}_{n, X}=N-\mathcal{H}_{n}(X)
$$

Proposition 5. Assume that σ is an algebraic curve of degree k without any multiple component and $X_{s} \subset \sigma$ is an arbitrary set of $s n$-independent points with $s<d(n, k)$. Then the set X_{s} can be extended to a maximal n-independent set $X_{d} \subset \sigma$, where $d=d(n, k)$.

Proof. It suffices to show that there is a point $A \in \sigma$ such that the set $X_{s+1}:=X_{s} \cup\{A\}$ is n-independent. Assume to the contrary that there is no such point, i.e. the set $X_{s+1}:=X_{s} \cup\{A\}$ is n-dependent for any $A \in \sigma$. Then, in view of Lemma 3, A has no fundamental polynomial with respect to the set X_{s+1}. In other words, we have

$$
p \in \Pi_{n} \text { and }\left.p\right|_{x_{s}}=0 \quad \Longrightarrow \quad p(A)=0 \text { for any } A \in \sigma .
$$

From here we obtain that

$$
\mathcal{P}_{n, x_{s}} \subset \mathcal{P}_{n, \sigma}:=\left\{q \sigma: q \in \Pi_{n-k}\right\} .
$$

Now, in view of Proposition 4, from here we get

$$
N-s=\operatorname{dim} \mathcal{P}_{n, x_{s}} \leq \operatorname{dim} \mathcal{P}_{n, \sigma}=N_{n-k}
$$

Therefore, $s \geq d(n, k)$, which contradicts the hypothesis of Proposition.
The Main Result. Below we determine the minimal number of n-independent nodes that uniquely determine the curve of degree $k, k \leq n$, passing through them.

Theorem 1. Assume that X is an arbitrary set of $(d(n, k-1)+2)$ n-independent nodes lying on a curve of degree k with $k \leq n$. Then the curve is determined uniquely. Moreover, there is a set X_{1} of $(d(n, k-1)+1) n$-independent nodes, such that more than one curves of degree k pass through all its nodes.

Proof. Let us start with the part "moreover". Consider the part of BerzolariRadon set $B R_{n}$ belonging to the first $k-1$ lines $\ell_{1}, \ldots, \ell_{k-1}$, i.e.

$$
X_{0}=B R_{n} \cap\left[\ell_{1} \cup \cdots \cup \ell_{k-1}\right] .
$$

We have that the set X_{0} consists of $d(n, k-1)=(n+1)+n+(n-1)+\cdots+(n-$ $k+3)$ nodes. We get a desired set X_{1} by adding to this set a node $A \in B R_{n} \backslash X_{0}$, i.e.
$X_{1}:=X_{0} \cup\{A\}$. Now we have that the set X_{1} is n-independent, since it is a subset of n-poised set $B R_{n}$ and $\# X_{1}=d(n, k-1)+1$. Finally, consider the curves of degree k of the form ℓq_{k-1}, where ℓ is any line passing through A and $q_{k-1}=\ell_{1} \cdots \ell_{k-1}$. It remains to notice that all these curves of degree k pass through all the nodes of X_{1}.

Now let us prove the first statement of Theorem. Assume the converse that there are two curves $\sigma, \sigma^{\prime} \in \Pi_{k}$, which pass through all the $d(n, k-1)+2$ nodes of X. In view of Proposition 5 , let us enlarge X to a set $\bar{X} \subset \sigma$ of $d(n, k) n$-independent nodes, by adding $n-k[=d(n, k)-(d(n, k-1)+2)]$ nodes $A_{1}, \ldots, A_{n-k} \in \sigma$, i.e. $\bar{X}=X \cup\left\{A_{i}\right\}_{i=1}^{n-k}$. Then we obtain $d(n, k) n$-independent nodes in σ and, therefore, this curve becomes a maximal curve of degree k with respect to the set \bar{X}.

Next let us choose $n-k$ distinct lines l_{1}, \ldots, l_{n-k}, which pass through the points A_{1}, \ldots, A_{n-k} respectively, and are not components (factors) of σ.

Set the polynomial

$$
p=\sigma^{\prime} \ell_{1} \ldots \ell_{n-k} \in \Pi_{n}
$$

Notice that p vanishes at all $d(n, k) n$-independent points of \bar{x}. Therefore, by the Proposition 3, ii), it has the following form

$$
p=\sigma q, \quad q \in \Pi_{n-k} .
$$

Thus, we have

$$
\begin{equation*}
\sigma^{\prime} \ell_{1} \ldots \ell_{n-k}=\sigma q . \tag{4}
\end{equation*}
$$

The lines $\ell_{1}, \ldots, \ell_{n-k}$ are not factors of σ, so they are factors of $q \in \Pi_{n-k}$, which means that $q=c \ell_{1} \ldots \ell_{n-k}$, where $c \neq 0$. Consequently we get from (4) that

$$
\sigma^{\prime}=c \sigma
$$

or in other words the curves σ^{\prime} and σ coincide.
Now let present two corollaries of Theorem. The first one concerns an arbitrary n-independent set X with $\# X \geq d(n, k-1)+2$ (not lying necessarily in a curve of degree $k, k \leq n-1$):

Corollary 2. Let X be a n-independent point set with $\# X \geq d(n, k-1)+2$ and $k \leq n-1$. Then there are at least $\left(N_{k}-1\right) k$-independent points in X.

Proof. Note that what we need to prove is $H(k, X) \geq N_{k}-1$. First assume that there is a curve σ of degree k passing through all the nodes of \mathcal{X} and, therefore, according to Theorem, we have

$$
\operatorname{dim} \mathcal{P}_{k, x}=1
$$

Thus we obtain that

$$
H(k, X)=\operatorname{dim} \Pi_{k}-\operatorname{dim} \mathcal{P}_{k, X}=\operatorname{dim} \Pi_{k}-1=N_{k}-1 .
$$

Now assume that there is no curve of degree k passing through all the nodes of X. Then according to Lemma 2 , we have

$$
H(k, X) \geq N_{k} .
$$

In the next lemma we consider an arbitrary n-independent set X with $\# X \leq d(n, k-1)+2$.

Corollary 3. Let X be a n-independent point set with $\# X \leq d(n, k-1)+2$ and $k \leq n-1$. Then there are at least $\# X-(n-k)(k-1)$ k-independent points in X.

Proof. In view of Lemma 1, first let us enlarge the set X to an n-independent set $\bar{X}, \# \bar{X}=d(n, k-1)+2$. By Corollary 2 , there is a subset $y \subset \bar{X}$ of $\left(N_{k}-1\right) k$-independent points. Finally, let us remove from y all the points belonging to the set $\bar{X} \backslash X$. Evidently, the resulted set is k-independent, and contains at least

$$
\left(N_{k}-1\right)-(\# \bar{X}-\# X)=\# X-(n-k)(k-1)
$$

points.

Received 07.05.2015

REFERENCES

1. Bayramian V.H., Hakopian H.A., Toroyan S.Z. On the Uniqueness of Algebraic Curves. // Proceedings of YSU. Physical and Mathematical Sciences, 2015, № 1, p. 3-7.
2. Eisenbud D., M. Green M., Harris J. Cayley-Bacharach Theorems and Conjectures. // Bull. Amer. Math. Soc., 1996, v. 33, p. 295-324.
3. Hakopian H., Malinyan A. Characterization of n-Independent Sets with no More than 3n Points. // Jaen J. Approx., 2012, v. 4, p. 121-136.
4. Hakopian H., Jetter K., Zimmermann G. Vandermonde Matrices for Intersection Points of Curves. // Jaen J. Approx., 2009, v. 1, p. 67-81.
5. Berzolari L. Sulla Determinazione di Una Curva o di Una Superficie Algebrica e su Alcune Questioni di Postulazione. // Lomb. Ist. Rend., 1914, v. 47, p. 556-564.
6. Radon J. Zur Mechanischen Kubatur. // Monatsh. Math., 1948, v. 52, p. 286-300.
7. Rafayelyan L. Poised Nodes Set Constructions on Algebraic Curves. // East Journal on Approx., 2011, v. 17, p. 285-298.
8. Carnicer J.M., Gasca N. Planar Configurations with Simple Lagrange Interpolation Formulae. In: Mathematical Methods in Curves and Surfaces (Eds. T. Lyche, L.L. Schumaker). Oslo, Nashville: Vanderbilt University Press, 2001, p. 55-62.
9. Carnicer J. M., Gasca N. A Conjecture on Multivariate Polynomial Interpolation. // Rev. R. Acad. Cience. Exactas Fis. Nat., Ser. A, Math., 2001, v. 95, p. 145-153.
10. Hakopian H., Mushyan G. On Multivariate Segmental Interpolation Problem. // J. Comp. Sci. \& Appl. Math., 2015, v. 1, p. 19-29.

[^0]: * E-mail: hakop@ysu.am
 ** E-mail: sofitoroyan@gmail.com

