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Typed λ -terms that use variables of any order and don’t use constants of
order > 1 are studied in the paper. Used constants of order 1 are strong com-
putable functions and each of them has an untyped λ -term, which λ -defines
it. Besides, for the set of built-in functions there exists such a notion of δ -
reduction, that every typed term has a single normal form. An algorithm of
translation of typed λ -terms to untyped λ -terms is presented. According to
that algorithm, each typed term t is mapped to an untyped term t ′. We study in
which case typed terms t1, t2 such that t1→→βδ t2 correspond to untyped terms
t1′, t2′ such that t1′→→β t2′.

MSC2010: 68N18.

Keywords: typed λ -terms, untyped λ -terms, translation, β -reduction,
δ -reduction.

1. Typed λ -terms. The following definitions are taken from [1]. Let M be a
partially ordered set, which has a least element ⊥ and every element of M is
comparable with itself and with ⊥. Let Types be the following set:

• M ∈ Types;
• if β ,α1, . . . ,αk ∈ Types (k > 0), then the set of all monotonic mappings

from α1× . . .×αk to β (denoted by [α1× . . .×αk→ β ]) belongs to Types.
Let α ∈ Types and V T

α be a countable set of variables of type α , then
V T = ∪α∈TypesV T

α is the set of all variables. The set of all terms, denoted by
ΛT = ∪α∈TypesΛ

T
α , where ΛT

α is the set of terms of type α , is defined the
following way:

• if c ∈ α , α ∈ Types, then c ∈ ΛT
α ;

• if x ∈V T
α ,α ∈ Types, then x ∈ ΛT

α ;
• if τ ∈ ΛT

[α1×...×αn→β ], ti ∈ ΛT
αi
, i = 1, . . . ,n (n ≥ 1), where α1, . . . ,αn,

β ∈ Types, then τ(t1, . . . , tn) ∈ ΛT
β

. The term τ(t1, . . . , tn) is said to be obtained by
the operation of application;

∗ E-mail: tigrankhondkaryan@gmail.com



46 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2015,�2, p. 45–52.

• if τ ∈ ΛT
β
,xi ∈ V T

αi
, where α1, . . . ,αn,β ∈ Types and i 6= j ⇒ xi 6= x j,

i, j = 1, . . . ,n (n ≥ 1), then λx1 . . .xn[τ] ∈ ΛT
[α1×...×αn→β ]. The term λx1 . . .xn[τ] is

said to be obtained by the operation of abstraction.
The notions of free and bound occurrences of variables in typed terms as well

as the notion of free variable are introduced in the conventional way. The set of all
free variables of a typed term t is denoted by FV (t). A term which doesn’t contain
free variables is called a closed term. Typed terms t1 and t2 are said to be congruent
(which is denoted by t1 ≡ t2), if one term can be obtained from the other by renaming
bound variables. In what follows, congruent terms are considered identical.

Let t ∈ ΛT
α , α ∈ Types and FV (t) ⊂ {y1, . . . ,yn}, ȳ0 = 〈y0

1, . . . ,y
0
n〉, where

yi ∈ V T
βi
, y0

i ∈ βi, βi ∈ Types, i = 1, . . . ,n, n ≥ 0. The value of the term t for the
values of the variables y1, . . . ,yn equal to ȳ0, is denoted by Valȳ0(t) and defined
as follows:

• if t ≡ c and c ∈ α , then Valȳ0(c) = c;
• if t ≡ x,x ∈V T

α , then Valȳ0(x) = y0
i , where FV (x) = {x} ⊂ {y1, . . . ,yn} and

x≡ yi, i = 1, . . . ,n, n≥ 0;
• if t ≡ τ(t1, ..., tk) ∈ ΛT

α , where τ ∈ ΛT
[α1×...×αk→α], ti ∈ ΛT

αi
, α,αi ∈ Types,

i = 1, . . . ,k,k ≥ 1, then Valȳ0(τ(t1, . . . , tk)) =Valȳ0(τ)(Valȳ0(t1), . . . ,Valȳ0(tk));
• if t ≡ λx1 . . .xk[τ] ∈ ΛT

α , where α = [α1× . . .×αk → β ],τ ∈ ΛT
β
,xi ∈ V T

αi
,

β ,αi ∈ Types, i = 1, . . . ,k, k ≥ 1, then Valȳ0(λx1 . . .xk[τ]) ∈ [α1× . . .×αk → β ]
and is defined as follows: let {y1, . . . ,yn}\{x1, . . . ,xk} = {yi1 , . . . ,yis}, s ≥ 0, and
ȳ1 = 〈y0

i1 , . . . ,y
0
is〉, then for any x̄0 =< x0

1, . . . ,x
0
k >, x0

j ∈ α j, j = 1, . . . ,k,
Valȳ0(λx1 . . .xk[τ])(x0

1, . . . ,x
0
k)=Val(x̄0,ȳ1)(τ), where x̄0, ȳ1 =< x0

1, . . . ,x
0
k ,y

0
i1 , . . . ,y

0
is >.

It follows from [1] that for any ȳ0 =< y0
1, . . . ,y

0
n >, ȳ0 =< y1

1, . . . ,y
1
n >

such that ȳ0 ⊆ ȳ1 and y0
i ,y

1
i ∈ βi (1≤ i≤ n) we have:

1. Valȳ0(t) ∈ α;
2. Valȳ0(t)⊆Valȳ1(t).
A term obtained by the simultaneous substitution of the terms t1, . . . , tn in the

term t for all free occurrences of variables x1, . . . ,xn respectively is denoted by
t[x1 := t1, . . . ,xn := tn]. A substitution is said to be admissible, if all free variables
of the term being substituted remain free after the substitution. We will consider only
admissible substitutions.

Let FV (t1)∪FV (t2) = {y1, . . . ,yn}, yi ∈V T
βi
, βi ∈ Types, i = 1, . . . ,n, n≥ 0,

terms t1 and t2 are called equivalent (denoted by t1∼ t2), if for any ȳ0 =< y0
1, . . . ,y

0
n >,

where y0
i ∈ βi, i = 1, . . . ,n, we have the following: Valȳ0(t1) = Valȳ0(t2). A term

t ∈ ΛT
α is called a constant term with a ∈ α value, if t ∼ a.
A term t ∈ΛT with a fixed occurrence of a subterm τ1 ∈ΛT

α , where α ∈ Types,
is denoted by tτ1 , and a term with this occurrence of τ1 replaced by τ2, where τ2 ∈ΛT

α ,
is denoted by tτ2 .

Let τ1,τ2 be terms, tτ1 be a term with a fixed occurrence of the subterm τ1,
then τ1 ∼ τ2⇒ tτ1 ∼ tτ2 [2].

A term of the form λx1 . . .xk[τ](t1, . . . , tk), where xi ∈ V T
αi
, i 6= j ⇒ xi 6= x j,
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τ ∈ΛT , ti ∈ΛT
αi
,αi ∈ Types, i, j = 1, . . . ,k, k≥ 1, is called a β -redex, its convolution

is the term τ[x1 := t1, . . . ,xk := tk]. A term t1 is said to be obtained from a term t0 by
one-step β -reduction (denoted by t0→β t1 ), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a β -redex and
τ1 is its convolution. A term t is said to be obtained from a term t0 by β -reduction
(denoted by t0 →→β t ), if there exists a finite sequence of terms t1, . . . , tn (n ≥ 1)
such that t1 ≡ t0, tn ≡ t and ti→β ti+1, where i = 1, . . . ,n− 1. A term that contains
no β -redexes is called a β -normal form. The set of all β -normal forms is denoted
by β −NFT .

The definition of δ -redex is taken from [2], a δ -redex has a form f (t1, . . . , tk),
where f ∈ [Mk → M], ti ∈ ΛT

M, i = 1, . . . ,k, k ≥ 1, its convolution is either
m ∈M and in this case f (t1, . . . , tk)∼m, or a subterm ti, in this case f (t1, . . . , tk)∼ ti,
i = 1, . . . ,k. A term t1 is said to be obtained from a term t0 by one-step δ -reduction
(denoted by t0 →δ t1), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a δ -redex and τ1 is its convolution.
A term t is said to be obtained from a term t0 by δ -reduction (denoted by t0→→δ t),
if there exists a finite sequence of terms t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t
and ti→δ ti+1, where i = 1, . . . ,n−1.

A term t1 is said to be obtained from a term t0 by one-step βδ -reduction
(t0 →βδ t1 ), if either t0 →β t1 or t0 →δ t1. A term t is said to be obtained from
a term t0 by βδ -reduction (t0 →→βδ t ), if there exists a finite sequence of terms
t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t and ti →βδ ti+1, where i = 1, . . . ,n− 1.
A term containing no βδ -redexes is called a normal form. The set of all normal
forms is denoted by NFT .

Let t1, t2 be terms, then t1 →→βδ t2 ⇒ t1 ∼ t2 [2]. A fixed set of term pairs
(τ0,τ1), where τ0 is δ -redex and τ1 is its convolution, is called a notion of δ -reduction
and is denoted by δ . A notion of δ -reduction is called natural, if:

1. δ is a single-valued relation, i.e. if < t1, t2 >∈ δ and < t1, t3 >∈ δ ,
then t2 ≡ t3, where t1, t2, t3 ∈ ΛT

M;
2. For any constant term f (t1, . . . , tk) ∈ ΛT

M with m ∈ M we have
f (t1, . . . , tk)→→βδ m, where f ∈ [Mk→M], t1, . . . , tk ∈ ΛT

M.
A natural notion of δ -reduction is called effective, natural notion of

δ -reduction, if there exists an algorithm, which for any term f (t1, . . . , tk), where
f ∈ [Mk → M], ti ∈ ΛT

M, i = 1, . . . ,k, k ≥ 1, gives its convolution, if f (t1, . . . , tk)
is a δ -redex and stops with a negative answer otherwise. We will consider an effec-
tive, natural notion of δ -reduction such that every term has a single normal form, i.e.
if t→→βδ τ1, t→→βδ τ2 and τ1,τ2 ∈ NFT ⇒ τ1 ≡ τ2. The necessary and sufficient
conditions for that are considered in [2].

L e m m a 1 . 1 . Let t ∈ΛT and t→→βδ τ , where τ ∈NFT , then there exists
a term t0 such that t→→β t0→→δ τ.

P r o o f . Directly follows from the uniqueness of the normal form. �
L e m m a 1 . 2 . Let t ∈ ΛT , x ∈ V T

α ,α ∈ Types and t →→βδ t0 ∈ NFT ,
FV (t0) = /0, then for any τ ∈ ΛT

α we have: t[x := τ]→→βδ t0.
P r o o f . λx[t](τ) →→βδ λx[t0](τ) →β t0, λx[t](τ) →β t[x := τ] and the

Lemma 1.2 follows from the uniqueness of the normal form. �
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2. Untyped λ -terms. We fix a countable set of variables V. The set of terms
is defined as follows:

• if x ∈V , then x ∈ Λ;
• if t1, t2 ∈ Λ then (t1t2) ∈ Λ. The term (t1t2) is said to be obtained by the

operation of application;
• if x ∈V then t ∈Λ, then (λxt) ∈Λ. The term (λxt) is said to be obtained by

the operation of abstraction.
The following shorthand notations are introduced: a term (. . .(t1t2) . . . tk), where

ti ∈ Λ, i = 1, . . . ,k, k > 1, is denoted by t1t2 . . . tk and a term (λx1(λx2(. . .(λxnt) . . .),
where x j ∈V, t ∈ Λ, is denoted by λx1x2 . . .xn.t, j = 1, . . . ,n, n > 0.

The notions of free and bound occurrences of variables in untyped terms as
well as the notion of free variable are introduced in the conventional way. The set of
all free variables of an untyped term t is denoted by FV (t). A term, which doesn’t
contain free variables, is called a closed term. Untyped terms t1 and t2 are said to be
congruent (t1 ≡ t2), if one term can be obtained from the other by renaming bound
variables. Congruent terms are considered identical.

We denote by t[x1 := t1, . . . ,xn := tn] a term obtained by simultaneous substi-
tution of terms t1, . . . , tn in the term t for all free occurrences of variables x1, . . . ,xn

respectively. A substitution is said to be admissible, if all free variables of substituted
term remain free after the substitution. We consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ1 is denoted by tτ1 , and a term
with this occurrence of τ1 replaced by a term τ2 is denoted by tτ2 .

A term of the form (λx.t)τ is called a β -redex, and the term t[x := τ] is called
its convolution. A term t1 is said to be obtained from a term t0 by one-step β -reduction
(denoted by t0 →β t1 ), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a β -redex and τ1 is its convolution.
A term t is said to be obtained from a term t0 by β -reduction (denoted by t0→→β t),
if there exists a finite sequence of terms t1, . . . , tn (n≥ 1) such that t1 ≡ t0, tn ≡ t and
ti→β ti+1, where i = 1, . . . ,n−1. A term containing no β -redexes is called a normal
form. The set of all normal forms is denoted by NF . A term t is said to have a normal
form, if there exists a term τ such that τ ∈ NF and t→→β τ .

From the Church–Rosser theorem it follows, that if t →→β τ1, t →→β τ2,
τ1,τ2 ∈ NF , then τ1 ≡ τ2.

A term is said to be a head normal form, if it has a form λx1 . . .xk.xt1 . . . tn,
where k,n ≥ 0, t1, . . . , tn ∈ Λ. The set of all head normal forms is denoted by HNF .
A term t is said to have a head normal form, if there exists a term τ such that τ ∈HNF
and t→→β τ . It is known, that NF ⊂ HNF , but HNF 6⊂ NF (see [3]).

Recall, that if a term has a head normal form, then the left reducing chain,
where always the leftmost redex is chosen, leads to a head normal form, and if the
term has a normal form, such reducing chain leads to the normal form (see [3]).

L e m m a 2 . 1 . Let tb be a term with a fixed occurrence of a term b, which
doesn’t have a head normal form, and let c be any term, then:

1. tb→→β τ , where τ ∈ NF ⇒ tc→→β τ;
2. tb has a head normal form⇒ tc has a head normal form.
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P r o o f . It is easy to see, that Point 1 of Lemma 2.1 follows from the
following statement: if tb→→β τ , where τ ∈NF and the left reducing chain’s length
is k > 0, then tc →→β τ and the left reducing chain’s length is also k. We prove
the statement. Obviously, the leftmost redex doesn’t belong to the term b. Let the
first leftmost redex have the form (λx.t1)t2. We prove by induction on the reducing
chain’s length k. If k = 1 it is clear, that x /∈ FV (t1) and the occurrence of b belongs
to the subterm t2, which proves the statement for the induction base. Let k > 1, we
suppose that the statement holds for k−1 and prove it for k. There are 3 cases:

a) the occurrence of b belongs to the subterm t2. Let t1 have n ≥ 0 free
occurrences of the variable x, each occurrence of x in t1 corresponds to an occur-
rence of b in the term obtained by redex convoluting. Sequentially replacing these n
occurrences of b to c, we note that the terms obtained after each replacement reduce
to τ and by the induction hypothesis the reducing chain’s length is k−1. Also note,
that the term obtained after these replacements can be also obtained after convoluting
the leftmost redex in tc⇒ tc→→β τ;

b) the occurrence of b belongs to the subterm t1. Note that the term obtained
by redex convoluting has an occurrence of the term b[x := t2], which doesn’t have
a head normal form as well (see [3]), reduces to τ and the reducing chain’s length
is k− 1. By the induction hypothesis the term with this occurrence of b[x := t2]
replaced by c[x := t2] reduces to τ and the reducing chain’s length is k−1. Also note,
that the term obtained after this replacement can be also obtained after convoluting
the leftmost redex in tc⇒ tc→→β τ;

c) the occurrence of b does not belong to the subterms t1 and t2. The state-
ment follows from the induction hypothesis. The proof of Point 2 is similar to the
proof of Point 1. �

L e m m a 2 . 2 . Let t ∈ Λ and x ∈V , then we have the following: t→→β t0,
where t0 ∈ NF and FV (t0) = /0⇒ for any term τ we have: t[x := τ]→→β t0.

P r o o f . (λx.t)τ →→βδ (λx.t0)τ →β t0,(λx.t)τ →β t[x := τ] and
Lemma 2.2 follows from the uniqueness of the normal form. �

3. Translation. Let M be a recursive, countable, partially ordered set, which
has a least element ⊥ and every element of M is comparable with itself and with ⊥.
Function f : Mk→M (k≥ 0) is called strong computable, if there exists an algorithm,
which for any m1, . . . ,mk ∈ M stops with the value f (m1, . . . ,mk). Every m ∈ M
is mapped to an untyped term in the following way:

• m ∈ M \ {⊥} ⇒ m′ ∈ NF, FV (m′) = /0 and for any m1,m2 ∈ M \ {⊥},
m1 6= m2⇒ m1

′ 6≡ m2
′;

• m≡⊥⇒ m′ ≡Ω≡ (λx.xx)(λx.xx).
We say that an untyped term Φ λ -defines (see [4]) the function f : Mk → M

(k ≥ 0), if for any m1, . . . ,mk ∈M we have the following:
f (m1, . . . ,mk) = m0 6=⊥⇒Φm1

′ . . .mk
′→→β m0

′,

f (m1, . . . ,mk) =⊥⇒Φm1
′ . . .mk

′ does not have a head normal form.

We consider typed terms using a set of functions C1 such that all functions in
C1 are strong computable and for each f ∈ C1 there exists an untyped term, which
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λ -defines the function f . We assume that for the set C1 there exists an effective,
natural notion of δ -reduction such that every typed term has a single normal form.

We present an algorithm of translation of any typed term t to an
untyped term t ′:

• t ≡ m ∈M⇒ t ′ ≡ m′;
• t ∈C1⇒ FV (t ′) = /0 and t ′ λ -defines t;
• t ≡ x ∈V T ⇒ x′ ∈V and ∀x1,x2 ∈V T , x1 6≡ x2⇒ x1

′ 6≡ x2
′;

• t ≡ τ(t1, . . . , tn), n≥ 1⇒ t ′ ≡ τ ′t1′ . . . tn′;
• t ≡ λx1 . . .xn[τ], n≥ 1⇒ t ′ ≡ λx1

′ . . .xn
′.τ ′.

L e m m a 3 . 1 . Let t,τ ∈ ΛT and t→→β τ , then t ′→→β τ ′.

P r o o f . There exist typed terms t0, . . . , tk (k ≥ 0) such that t ≡ t0→β t1→β

. . . →β tk ≡ τ . The proof is by induction on the reducing chain’s length k ≥ 0.
Lemma 3.1 is obvious for the basis of the induction, i.e. if k = 0. Let k > 0, we
suppose that Lemma 3.1 holds for k− 1. It is obvious that there exists a β -redex
τ0 such that τ0 is a subterm of the term t, τ0 ≡ λx1 . . .xn[a](b1, . . . ,bn),n ≥ 1, the
term τ1 ≡ a[x1 := b1, . . . ,xn := bn] is the convolution of τ0 and t1 ≡ tτ1 . Let FV (bi)∩
{x1, . . . ,xn} = /0, i = 1, . . . ,n, we can achieve this by renaming bound variables
otherwise. It is easy to see, that τ0

′ ≡ (λx1
′ . . .xn

′.a′)b1
′ . . .bn

′ and τ0
′ →→β τ1

′,
where τ1

′ ≡ a′[x1
′ := b1

′,x2
′ := b2

′, . . . ,xn
′ := bn

′]. It is also easy to see, that the term
τ0
′ has an occurrence in the term t ′, so replacing this occurrence with τ1

′, we get
the term t1′ and therefore t ′→→β t1′. Since t1 reduces to τ and the reducing chain’s
length is k−1, by induction hypothesis t1′→→β τ ′ and, therefore, t ′→→β τ ′. �

L e m m a 3 . 2 . Let t ∈ΛT
M, t ∈ β −NF,FV (t) = /0,FV (τ) = /0,τ ∈ NF, then

1. t→→δ m ∈M \{⊥} and τ ≡ m′⇔ t ′→→β τ;
2. t→→δ ⊥⇔ t ′ doesn’t have a head normal form.
P r o o f . As t ∈ β −NF and FV (t) = /0 , there exists a reducing chain such

that every time a δ -redex is chosen of the form f (m1, . . . ,mn), mi ∈M, i = 1, . . . ,n.
We consider such chain. Let t ≡ t0 →δ t1 →δ . . . →δ tk ≡ m, ti ∈ ΛT

M,
i = 1, . . . ,k, k ≥ 0. The proof is by induction on the reducing chain’s length k ≥ 0.
Lemma 3.2(⇒) is obvious for the basis of the induction, i.e. if k = 0. Let k > 0,
we suppose, that Lemma 3.2(⇒) holds for k− 1. It is obvious that there exists a
δ -redex τ0 such that τ0 is a subterm of the term t, the term τ1 is the convolution
of τ0 and t1 ≡ tτ1 . It is easy to see, that τ1 ≡ m0 ∈ M. It is also easy to see, that
the term τ0

′ has an occurrence in the term t ′, and if we replace this occurrence with
m0
′, then we get the term t1′. If m0 6= ⊥, then f ′m1

′ . . .mn
′ →→β m0

′. If m0 = ⊥,
then f ′m1

′ . . .mn
′ does not have a head normal form and from Lemma 2.1 it follows,

that if we replace the occurrence of m0
′ ≡ Ω in t1′ with f ′m1

′ . . .mn
′, then either the

resulting term will reduce to the same normal form as t1′ or both of the terms will not
have a head normal form. The term t1 reduces to m or ⊥ and the reducing chain’s
length is k− 1, therefore, Lemma 3.2(⇒) follows from the induction hypothesis.
Assuming the opposite it is easy to see that Lemma 3.2(⇐) directly follows from
Lemma 3.2(⇒). �

T h e o r e m 3 . 1 . Let t ∈ ΛT
M, FV (t) = /0, τ ∈ NF and FV (τ) = /0 , then
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1. t→→βδ m,m ∈M \{⊥} and τ ≡ m′⇔ t ′→→β τ;
2. t→→βδ ⊥⇔ t ′ doesn’t have a head normal form.
P r o o f . Theorem 3.1(⇒) directly follows from Lemmas 1.1, 3.1 and 3.2.

Assuming the opposite it is easy to see that Theorem 3.1(⇐) follows from
Theorem 3.1(⇒). �

T h e o r e m 3 . 2 .
1. Let t ∈ ΛT

M,τ ∈ NF and FV (τ) = /0 , then t →→βδ m, m ∈ M \ {⊥} and
τ ≡ m′⇔ t ′→→β τ .

2. There exists a term t ∈ ΛT
M such that t →→βδ ⊥, but t ′ has a head

normal form.
P r o o f .
Point 1. (⇒) We replace all free occurrences of variables in the term t with

the terms that correspond to the least elements of the according types, obtained by
the operation of abstraction and the term ⊥. According to Lemma 1.2, the resulting
term reduces to m, and, according to Theorem 3.1, the corresponding untyped term
reduces to m′. Then, according to Lemma 2.1, the term t ′ also reduces to m′.

(⇐) According to Lemma 1.1, there exists t0 ∈ β −NFT , such that t→→β t0.
It follows from Lemma 3.1 that t ′ →→β t ′0. Let FV (t0) = {x1,x2, . . . ,xn},xi ∈ V T

αi
,

αi ∈ Types,n ≥ 0 and Ωi be a term that represents the least element of αi, obtained
by the operation of abstraction and the term ⊥, i = 1, . . . ,n. It is easy to see, that
(t0[x1 := Ω1, . . . ,xn := Ωn])

′ ≡ t ′0[x1
′ := Ω1

′, . . . ,xn
′ := Ωn

′]. According to Lemma
2.2, t0′[x1

′ := Ω1
′, . . . ,xn

′ := Ωn
′]→→β τ . Let t0[x1 := Ω1, . . . ,xn := Ωn]→→βδ m,

it follows from Theorem 3.1 that m 6=⊥ and m′ ≡ τ . Suppose that Ω0
1, . . . ,Ω

0
n are the

least elements of the types α1, . . . ,αn. Since Ωi ∼ Ω0
i (1 ≤ i ≤ n) and

t0[x1 := Ω1, . . . ,xn := Ωn]→→βδ m, it can be shown, that Val<Ω0
1,...,Ω

0
n>
(t0) = m.

For any a1,a2, . . . ,an, where ai ∈ αi, i = 1, . . . ,n, we have the following:
〈Ω0

1, . . . ,Ω
0
n〉 ⊆ 〈a1, . . . ,an〉 and Val<a1...an>(t0) = m. Consequently, t0 is a constant

term with m value. Since t0 ∈ β −NF , either t0 ∈M, i.e t0 ≡ m, or t0 ≡ f (t1, . . . , tk),
k≥ 0, f ∈C1, ti ∈ ΛT

M (0≤ i≤ k), and according to the feature of a natural notion of
δ -reduction we have: f (t1, . . . , tk)→→δ m.

To prove Point 2 of the Theorem, we give an example. Let M = N ∪ {⊥}.
If n ∈ N, then n′ ≡ 〈n〉, where 〈0〉 ≡ λx.x and 〈n+ 1〉 ≡ λx.xF〈n〉,F ≡ λxy.y. Let
C1 = { f}, where for any m ∈ M f (m) = ⊥. Let f ′ ≡ λx.(Zero x)ΩΩ, where
Zero≡ λx.x(λxyz.z)T FT,T ≡ λxy.x. Let v∈V T , then it is clear, that f (v)→→βδ ⊥,
but the term f ′v′ has a head normal form. �

T h e o r e m 3 . 3 .
1. For any terms t1, t2 ∈ ΛT , such that t1 →→βδ t2, and there exists a

reducing chain from the term t1 to the term t2, which is always choosing a δ -redex,
the convolution of which is some m ∈M \{⊥}, we have the following: t1′→→β t2′.

2. There exist terms t1, t2 ∈ ΛT such that t1→→βδ t2, but t1′ does not reduce
to t2′.

P r o o f . We prove Point 1 by induction on the length k ≥ 0 of the
reducing chain from t1 to t2. Point 1 is obvious for the basis of the induction.
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Suppose k > 0 and the statement holds for k−1. Let τ1 be the first convoluted redex,
τ2 be its convolution and t1 ≡ tτ1 . If τ1 is a β -redex, then it follows from Lemma 3.1
that t1′ ≡ t ′

τ ′1
→→β t ′

τ2 ′
and Point 1 follows from the induction hypothesis. If τ1 is a

δ -redex, then τ2 ∈M \{⊥} and it follows from Theorem 3.2, that t1′ ≡ t ′
τ1 ′
→→β t ′

τ2 ′
,

and Point 1 also follows from the induction hypothesis. Point 2 of Theorem 3.3
directly follows from the Point 2 of Theorem 3.2. �
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