ON TYPED AND UNTYPED LAMBDA-TERMS

T. V. KHONDKARYAN *
Chair of Programming and Information Technologies YSU, Armenia

Typed λ-terms that use variables of any order and don't use constants of order >1 are studied in the paper. Used constants of order 1 are strong computable functions and each of them has an untyped λ-term, which λ-defines it. Besides, for the set of built-in functions there exists such a notion of δ reduction, that every typed term has a single normal form. An algorithm of translation of typed λ-terms to untyped λ-terms is presented. According to that algorithm, each typed term t is mapped to an untyped term t^{\prime}. We study in which case typed terms t_{1}, t_{2} such that $t_{1} \rightarrow \rightarrow_{\beta \delta} t_{2}$ correspond to untyped terms $t_{1}{ }^{\prime}, t_{2}{ }^{\prime}$ such that $t_{1}{ }^{\prime} \rightarrow \rightarrow_{\beta} t_{2}{ }^{\prime}$.

MSC2010: 68N18.
Keywords: typed λ-terms, untyped λ-terms, translation, β-reduction, δ-reduction.

1. Typed λ-terms. The following definitions are taken from [1]. Let M be a partially ordered set, which has a least element \perp and every element of M is comparable with itself and with \perp. Let Types be the following set:

- $M \in$ Types $;$
- if $\beta, \alpha_{1}, \ldots, \alpha_{k} \in$ Types $(k>0)$, then the set of all monotonic mappings from $\alpha_{1} \times \ldots \times \alpha_{k}$ to β (denoted by $\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$) belongs to Types.

Let $\alpha \in$ Types and V_{α}^{T} be a countable set of variables of type α, then $V^{T}=\cup_{\alpha \in \text { Types }} V_{\alpha}^{T}$ is the set of all variables. The set of all terms, denoted by $\Lambda^{T}=\cup_{\alpha \in \text { Types }} \Lambda_{\alpha}^{T}$, where Λ_{α}^{T} is the set of terms of type α, is defined the following way:

- if $c \in \alpha, \alpha \in$ Types, then $c \in \Lambda_{\alpha}^{T}$;
- if $x \in V_{\alpha}^{T}, \alpha \in$ Types, then $x \in \Lambda_{\alpha}^{T}$;
- if $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{n} \rightarrow \beta\right]}^{T}, \quad t_{i} \in \Lambda_{\alpha_{i}}^{T}, i=1, \ldots, n(n \geq 1)$, where $\alpha_{1}, \ldots, \alpha_{n}$, $\beta \in$ Types, then $\tau\left(t_{1}, \ldots, t_{n}\right) \in \Lambda_{\beta}^{T}$. The term $\tau\left(t_{1}, \ldots, t_{n}\right)$ is said to be obtained by the operation of application;

[^0]- if $\tau \in \Lambda_{\beta}^{T}, x_{i} \in V_{\alpha_{i}}^{T}$, where $\alpha_{1}, \ldots, \alpha_{n}, \beta \in$ Types and $i \neq j \Rightarrow x_{i} \neq x_{j}$, $i, j=1, \ldots, n(n \geq 1)$, then $\lambda x_{1} \ldots x_{n}[\tau] \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{n} \rightarrow \beta\right]}^{T}$. The term $\lambda x_{1} \ldots x_{n}[\tau]$ is said to be obtained by the operation of abstraction.

The notions of free and bound occurrences of variables in typed terms as well as the notion of free variable are introduced in the conventional way. The set of all free variables of a typed term t is denoted by $F V(t)$. A term which doesn't contain free variables is called a closed term. Typed terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables. In what follows, congruent terms are considered identical.

Let $t \in \Lambda_{\alpha}^{T}, \alpha \in$ Types and $F V(t) \subset\left\{y_{1}, \ldots, y_{n}\right\}, \overline{y_{0}}=\left\langle y_{1}^{0}, \ldots, y_{n}^{0}\right\rangle$, where $y_{i} \in V_{\beta_{i}}^{T}, y_{i}^{0} \in \beta_{i}, \beta_{i} \in$ Types, $i=1, \ldots, n, n \geq 0$. The value of the term t for the values of the variables y_{1}, \ldots, y_{n} equal to $\overline{y_{0}}$, is denoted by $\operatorname{Val}_{\overline{y_{0}}}(t)$ and defined as follows:

- if $t \equiv c$ and $c \in \alpha$, then $\operatorname{Val}_{\overline{y_{0}}}(c)=c$;
- if $t \equiv x, x \in V_{\alpha}^{T}$, then $\operatorname{Val}_{\overline{y_{0}}}(x)=y_{i}^{0}$, where $F V(x)=\{x\} \subset\left\{y_{1}, \ldots, y_{n}\right\}$ and $x \equiv y_{i}, i=1, \ldots, n, n \geq 0$;
- if $t \equiv \tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\alpha}^{T}$, where $\tau \in \Lambda_{\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \alpha\right]}^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\operatorname{Val}_{\overline{y_{0}}}\left(\tau\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{Val}_{\overline{y_{0}}}(\tau)\left(\operatorname{Val}_{\overline{y_{0}}}\left(t_{1}\right), \ldots, \operatorname{Val}_{\overline{y_{0}}}\left(t_{k}\right)\right)$;
- if $t \equiv \lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\alpha}^{T}$, where $\alpha=\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right], \tau \in \Lambda_{\beta}^{T}, x_{i} \in V_{\alpha_{i}}^{T}$, $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\operatorname{Val}_{\overline{y_{0}}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right) \in\left[\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \beta\right]$ and is defined as follows: let $\left\{y_{1}, \ldots, y_{n}\right\} \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\left\{y_{i_{1}}, \ldots, y_{i_{s}}\right\}, s \geq 0$, and $\overline{y_{1}}=\left\langle y_{i_{1}}^{0}, \ldots, y_{i_{s}}^{0}\right\rangle$, then for any $\overline{x_{0}}=<x_{1}^{0}, \ldots, x_{k}^{0}>, \quad x_{j}^{0} \in \alpha_{j}, j=1, \ldots, k$, $\operatorname{Val}_{\overline{y_{0}}}\left(\lambda x_{1} \ldots x_{k}[\tau]\right)\left(x_{1}^{0}, \ldots, x_{k}^{0}\right)=\operatorname{Val}_{\left(\overline{x_{0}}, \overline{y_{1}}\right)}(\tau)$, where $\overline{x_{0}}, \overline{y_{1}}=<x_{1}^{0}, \ldots, x_{k}^{0}, y_{i_{1}}^{0}, \ldots, y_{i_{s}}^{0}>$.

It follows from [1] that for any $\overline{y_{0}}=<y_{1}^{0}, \ldots, y_{n}^{0}>, \overline{y_{0}}=<y_{1}^{1}, \ldots, y_{n}^{1}>$ such that $\overline{y_{0}} \subseteq \overline{y_{1}}$ and $y_{i}^{0}, y_{i}^{1} \in \beta_{i}(1 \leq i \leq n)$ we have:

1. $\operatorname{Val}_{\bar{y}_{0}}(t) \in \alpha$;
2. $\operatorname{Val}_{\overline{y_{0}}}(t) \subseteq \operatorname{Val}_{\overline{y_{1}}}(t)$.

A term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{n} in the term t for all free occurrences of variables x_{1}, \ldots, x_{n} respectively is denoted by $t\left[x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}\right]$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

Let $F V\left(t_{1}\right) \cup F V\left(t_{2}\right)=\left\{y_{1}, \ldots, y_{n}\right\}, y_{i} \in V_{\beta_{i}}^{T}, \beta_{i} \in$ Types, $i=1, \ldots, n, n \geq 0$, terms t_{1} and t_{2} are called equivalent (denoted by $t_{1} \sim t_{2}$), if for any $\overline{y_{0}}=<y_{1}^{0}, \ldots, y_{n}^{0}>$, where $y_{i}^{0} \in \beta_{i}, i=1, \ldots, n$, we have the following: $\operatorname{Val}_{\overline{y_{0}}}\left(t_{1}\right)=\operatorname{Val}_{\bar{y}_{0}}\left(t_{2}\right)$. A term $t \in \Lambda_{\alpha}^{T}$ is called a constant term with $a \in \alpha$ value, if $t \sim a$.

A term $t \in \Lambda^{T}$ with a fixed occurrence of a subterm $\tau_{1} \in \Lambda_{\alpha}^{T}$, where $\alpha \in$ Types, is denoted by $t_{\tau_{1}}$, and a term with this occurrence of τ_{1} replaced by τ_{2}, where $\tau_{2} \in \Lambda_{\alpha}^{T}$, is denoted by $t_{\tau_{2}}$.

Let τ_{1}, τ_{2} be terms, $t_{\tau_{1}}$ be a term with a fixed occurrence of the subterm τ_{1}, then $\tau_{1} \sim \tau_{2} \Rightarrow t_{\tau_{1}} \sim t_{\tau_{2}}$ [2].

A term of the form $\lambda x_{1} \ldots x_{k}[\tau]\left(t_{1}, \ldots, t_{k}\right)$, where $x_{i} \in V_{\alpha_{i}}^{T}, i \neq j \Rightarrow x_{i} \neq x_{j}$,
$\tau \in \Lambda^{T}, t_{i} \in \Lambda_{\alpha_{i}}^{T}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$, is called a β-redex, its convolution is the term $\tau\left[x_{1}:=t_{1}, \ldots, x_{k}:=t_{k}\right]$. A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$. A term that contains no β-redexes is called a β-normal form. The set of all β-normal forms is denoted by $\beta-N F^{T}$.

The definition of δ-redex is taken from [2], a δ-redex has a form $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}, i=1, \ldots, k, k \geq 1$, its convolution is either $m \in M$ and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim m$, or a subterm t_{i}, in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim t_{i}$, $i=1, \ldots, k$. A term t_{1} is said to be obtained from a term t_{0} by one-step δ-reduction (denoted by $t_{0} \rightarrow_{\delta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a δ-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by δ-reduction (denoted by $t_{0} \rightarrow \rightarrow_{\delta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\delta} t_{i+1}$, where $i=1, \ldots, n-1$.

A term t_{1} is said to be obtained from a term t_{0} by one-step $\beta \delta$-reduction $\left(t_{0} \rightarrow_{\beta \delta} t_{1}\right)$, if either $t_{0} \rightarrow_{\beta} t_{1}$ or $t_{0} \rightarrow_{\delta} t_{1}$. A term t is said to be obtained from a term t_{0} by $\beta \delta$-reduction ($t_{0} \rightarrow_{\beta \delta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta \delta} t_{i+1}$, where $i=1, \ldots, n-1$. A term containing no $\beta \delta$-redexes is called a normal form. The set of all normal forms is denoted by $N F^{T}$.

Let t_{1}, t_{2} be terms, then $t_{1} \rightarrow \rightarrow_{\beta \delta} t_{2} \Rightarrow t_{1} \sim t_{2}$ [2]. A fixed set of term pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is δ-redex and τ_{1} is its convolution, is called a notion of δ-reduction and is denoted by δ. A notion of δ-reduction is called natural, if:

1. δ is a single-valued relation, i.e. if $\left\langle t_{1}, t_{2}\right\rangle \in \delta$ and $\left\langle t_{1}, t_{3}\right\rangle \in \delta$, then $t_{2} \equiv t_{3}$, where $t_{1}, t_{2}, t_{3} \in \Lambda_{M}^{T}$;
2. For any constant term $f\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{M}^{T}$ with $m \in M$ we have $f\left(t_{1}, \ldots, t_{k}\right) \rightarrow_{\beta \delta} m$, where $f \in\left[M^{k} \rightarrow M\right], t_{1}, \ldots, t_{k} \in \Lambda_{M}^{T}$.

A natural notion of δ-reduction is called effective, natural notion of δ-reduction, if there exists an algorithm, which for any term $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}^{T}, i=1, \ldots, k, k \geq 1$, gives its convolution, if $f\left(t_{1}, \ldots, t_{k}\right)$ is a δ-redex and stops with a negative answer otherwise. We will consider an effective, natural notion of δ-reduction such that every term has a single normal form, i.e. if $t \rightarrow \rightarrow_{\beta \delta} \tau_{1}, t \rightarrow \rightarrow_{\beta \delta} \tau_{2}$ and $\tau_{1}, \tau_{2} \in N F^{T} \Rightarrow \tau_{1} \equiv \tau_{2}$. The necessary and sufficient conditions for that are considered in [2].

Lemma 1.1. Let $t \in \Lambda^{T}$ and $t \rightarrow \rightarrow_{\beta \delta} \tau$, where $\tau \in N F^{T}$, then there exists a term t_{0} such that $t \rightarrow \rightarrow_{\beta} t_{0} \rightarrow_{\delta} \tau$.

Proof. Directly follows from the uniqueness of the normal form.
Lemma 1.2. Let $t \in \Lambda^{T}, x \in V_{\alpha}^{T}, \alpha \in$ Types and $t \rightarrow \rightarrow_{\beta \delta} t_{0} \in N F^{T}$, $F V\left(t_{0}\right)=\emptyset$, then for any $\tau \in \Lambda_{\alpha}^{T}$ we have: $t[x:=\tau] \rightarrow \rightarrow_{\beta \delta} t_{0}$.

Proof. $\lambda x[t](\tau) \rightarrow_{\beta \delta} \lambda x\left[t_{0}\right](\tau) \rightarrow_{\beta} t_{0}, \lambda x[t](\tau) \rightarrow_{\beta} t[x:=\tau]$ and the Lemma 1.2 follows from the uniqueness of the normal form.
2. Untyped λ-terms. We fix a countable set of variables V. The set of terms is defined as follows:

- if $x \in V$, then $x \in \Lambda$;
- if $t_{1}, t_{2} \in \Lambda$ then $\left(t_{1} t_{2}\right) \in \Lambda$. The term $\left(t_{1} t_{2}\right)$ is said to be obtained by the operation of application;
- if $x \in V$ then $t \in \Lambda$, then $(\lambda x t) \in \Lambda$. The term $(\lambda x t)$ is said to be obtained by the operation of abstraction.

The following shorthand notations are introduced: a term $\left(\ldots\left(t_{1} t_{2}\right) \ldots t_{k}\right)$, where $t_{i} \in \Lambda, i=1, \ldots, k, k>1$, is denoted by $t_{1} t_{2} \ldots t_{k}$ and a term $\left(\lambda x_{1}\left(\lambda x_{2}\left(\ldots\left(\lambda x_{n} t\right) \ldots\right)\right.\right.$, where $x_{j} \in V, t \in \Lambda$, is denoted by $\lambda x_{1} x_{2} \ldots x_{n} . t, j=1, \ldots, n, n>0$.

The notions of free and bound occurrences of variables in untyped terms as well as the notion of free variable are introduced in the conventional way. The set of all free variables of an untyped term t is denoted by $F V(t)$. A term, which doesn't contain free variables, is called a closed term. Untyped terms t_{1} and t_{2} are said to be congruent $\left(t_{1} \equiv t_{2}\right)$, if one term can be obtained from the other by renaming bound variables. Congruent terms are considered identical.

We denote by $t\left[x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}\right]$ a term obtained by simultaneous substitution of terms t_{1}, \ldots, t_{n} in the term t for all free occurrences of variables x_{1}, \ldots, x_{n} respectively. A substitution is said to be admissible, if all free variables of substituted term remain free after the substitution. We consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ_{1} is denoted by $t_{\tau_{1}}$, and a term with this occurrence of τ_{1} replaced by a term τ_{2} is denoted by $t_{\tau_{2}}$.

A term of the form $(\lambda x . t) \tau$ is called a β-redex, and the term $t[x:=\tau]$ is called its convolution. A term t_{1} is said to be obtained from a term t_{0} by one-step β-reduction (denoted by $t_{0} \rightarrow_{\beta} t_{1}$), if $t_{0} \equiv t_{\tau_{0}}, t_{1} \equiv t_{\tau_{1}}, \tau_{0}$ is a β-redex and τ_{1} is its convolution. A term t is said to be obtained from a term t_{0} by β-reduction (denoted by $t_{0} \rightarrow \rightarrow_{\beta} t$), if there exists a finite sequence of terms $t_{1}, \ldots, t_{n}(n \geq 1)$ such that $t_{1} \equiv t_{0}, t_{n} \equiv t$ and $t_{i} \rightarrow_{\beta} t_{i+1}$, where $i=1, \ldots, n-1$. A term containing no β-redexes is called a normal form. The set of all normal forms is denoted by $N F$. A term t is said to have a normal form, if there exists a term τ such that $\tau \in N F$ and $t \rightarrow_{\beta} \tau$.

From the Church-Rosser theorem it follows, that if $t \rightarrow \rightarrow_{\beta} \tau_{1}, t \rightarrow \rightarrow_{\beta} \tau_{2}$, $\tau_{1}, \tau_{2} \in N F$, then $\tau_{1} \equiv \tau_{2}$.

A term is said to be a head normal form, if it has a form $\lambda x_{1} \ldots x_{k} \cdot x t_{1} \ldots t_{n}$, where $k, n \geq 0, t_{1}, \ldots, t_{n} \in \Lambda$. The set of all head normal forms is denoted by $H N F$. A term t is said to have a head normal form, if there exists a term τ such that $\tau \in H N F$ and $t \rightarrow \rightarrow_{\beta} \tau$. It is known, that $N F \subset H N F$, but $H N F \not \subset N F$ (see [3]).

Recall, that if a term has a head normal form, then the left reducing chain, where always the leftmost redex is chosen, leads to a head normal form, and if the term has a normal form, such reducing chain leads to the normal form (see [3]).

Lemma 2.1. Let t_{b} be a term with a fixed occurrence of a term b, which doesn't have a head normal form, and let c be any term, then:

1. $t_{b} \rightarrow_{\beta} \tau$, where $\tau \in N F \Rightarrow t_{c} \rightarrow_{\beta} \tau$;
2. t_{b} has a head normal form $\Rightarrow t_{c}$ has a head normal form.

Proof. It is easy to see, that Point 1 of Lemma 2.1 follows from the following statement: if $t_{b} \rightarrow_{\beta} \tau$, where $\tau \in N F$ and the left reducing chain's length is $k>0$, then $t_{c} \rightarrow \rightarrow_{\beta} \tau$ and the left reducing chain's length is also k. We prove the statement. Obviously, the leftmost redex doesn't belong to the term b. Let the first leftmost redex have the form $\left(\lambda x . t_{1}\right) t_{2}$. We prove by induction on the reducing chain's length k. If $k=1$ it is clear, that $x \notin F V\left(t_{1}\right)$ and the occurrence of b belongs to the subterm t_{2}, which proves the statement for the induction base. Let $k>1$, we suppose that the statement holds for $k-1$ and prove it for k. There are 3 cases:
a) the occurrence of b belongs to the subterm t_{2}. Let t_{1} have $n \geq 0$ free occurrences of the variable x, each occurrence of x in t_{1} corresponds to an occurrence of b in the term obtained by redex convoluting. Sequentially replacing these n occurrences of b to c, we note that the terms obtained after each replacement reduce to τ and by the induction hypothesis the reducing chain's length is $k-1$. Also note, that the term obtained after these replacements can be also obtained after convoluting the leftmost redex in $t_{c} \Rightarrow t_{c} \rightarrow_{\beta} \tau$;
b) the occurrence of b belongs to the subterm t_{1}. Note that the term obtained by redex convoluting has an occurrence of the term $b\left[x:=t_{2}\right]$, which doesn't have a head normal form as well (see [3]), reduces to τ and the reducing chain's length is $k-1$. By the induction hypothesis the term with this occurrence of $b\left[x:=t_{2}\right]$ replaced by $c\left[x:=t_{2}\right]$ reduces to τ and the reducing chain's length is $k-1$. Also note, that the term obtained after this replacement can be also obtained after convoluting the leftmost redex in $t_{c} \Rightarrow t_{c} \rightarrow_{\beta} \tau$;
c) the occurrence of b does not belong to the subterms t_{1} and t_{2}. The statement follows from the induction hypothesis. The proof of Point 2 is similar to the proof of Point 1.

Lemma 2.2. Let $t \in \Lambda$ and $x \in V$, then we have the following: $t \rightarrow \rightarrow_{\beta} t_{0}$, where $t_{0} \in N F$ and $F V\left(t_{0}\right)=\emptyset \Rightarrow$ for any term τ we have: $t[x:=\tau] \rightarrow_{\beta} t_{0}$.

Proof. $\quad(\lambda x . t) \tau \rightarrow_{\beta \delta}\left(\lambda x . t_{0}\right) \tau \rightarrow_{\beta} t_{0},(\lambda x . t) \tau \rightarrow_{\beta} t[x:=\tau]$ and Lemma 2.2 follows from the uniqueness of the normal form.
3. Translation. Let M be a recursive, countable, partially ordered set, which has a least element \perp and every element of M is comparable with itself and with \perp. Function $f: M^{k} \rightarrow M(k \geq 0)$ is called strong computable, if there exists an algorithm, which for any $m_{1}, \ldots, m_{k} \in M$ stops with the value $f\left(m_{1}, \ldots, m_{k}\right)$. Every $m \in M$ is mapped to an untyped term in the following way:

- $m \in M \backslash\{\perp\} \Rightarrow m^{\prime} \in N F, F V\left(m^{\prime}\right)=\emptyset$ and for any $m_{1}, m_{2} \in M \backslash\{\perp\}$, $m_{1} \neq m_{2} \Rightarrow m_{1}{ }^{\prime} \not \equiv m_{2}{ }^{\prime}$;
- $m \equiv \perp \Rightarrow m^{\prime} \equiv \Omega \equiv(\lambda x . x x)(\lambda x . x x)$.

We say that an untyped term $\Phi \lambda$-defines (see [4]) the function $f: M^{k} \rightarrow M$ $(k \geq 0)$, if for any $m_{1}, \ldots, m_{k} \in M$ we have the following:

$$
f\left(m_{1}, \ldots, m_{k}\right)=m_{0} \neq \perp \Rightarrow \Phi m_{1}^{\prime} \ldots m_{k}^{\prime} \rightarrow \rightarrow_{\beta} m_{0}^{\prime}
$$

$f\left(m_{1}, \ldots, m_{k}\right)=\perp \Rightarrow \Phi m_{1}{ }^{\prime} \ldots m_{k}{ }^{\prime}$ does not have a head normal form.
We consider typed terms using a set of functions C_{1} such that all functions in C_{1} are strong computable and for each $f \in C_{1}$ there exists an untyped term, which
λ-defines the function f. We assume that for the set C_{1} there exists an effective, natural notion of δ-reduction such that every typed term has a single normal form.

We present an algorithm of translation of any typed term t to an untyped term t^{\prime} :

- $t \equiv m \in M \Rightarrow t^{\prime} \equiv m^{\prime}$;
- $t \in C_{1} \Rightarrow F V\left(t^{\prime}\right)=\emptyset$ and $t^{\prime} \lambda$-defines t;
- $t \equiv x \in V^{T} \Rightarrow x^{\prime} \in V$ and $\forall x_{1}, x_{2} \in V^{T}, x_{1} \not \equiv x_{2} \Rightarrow x_{1}{ }^{\prime} \not \equiv x_{2}{ }^{\prime}$;
- $t \equiv \tau\left(t_{1}, \ldots, t_{n}\right), n \geq 1 \Rightarrow t^{\prime} \equiv \tau^{\prime} t_{1}{ }^{\prime} \ldots t_{n}^{\prime}$;
- $t \equiv \lambda x_{1} \ldots x_{n}[\tau], n \geq 1 \Rightarrow t^{\prime} \equiv \lambda x_{1}{ }^{\prime} \ldots x_{n}{ }^{\prime} \cdot \tau^{\prime}$.

Lemma 3.1. Let $t, \tau \in \Lambda^{T}$ and $t \rightarrow_{\beta} \tau$, then $t^{\prime} \rightarrow_{\beta} \rightarrow_{\beta} \tau^{\prime}$.
Proof. There exist typed terms $t_{0}, \ldots, t_{k}(k \geq 0)$ such that $t \equiv t_{0} \rightarrow_{\beta} t_{1} \rightarrow_{\beta}$ $\ldots \rightarrow_{\beta} t_{k} \equiv \tau$. The proof is by induction on the reducing chain's length $k \geq 0$. Lemma 3.1 is obvious for the basis of the induction, i.e. if $k=0$. Let $k>0$, we suppose that Lemma 3.1 holds for $k-1$. It is obvious that there exists a β-redex τ_{0} such that τ_{0} is a subterm of the term $t, \tau_{0} \equiv \lambda x_{1} \ldots x_{n}[a]\left(b_{1}, \ldots, b_{n}\right), n \geq 1$, the term $\tau_{1} \equiv a\left[x_{1}:=b_{1}, \ldots, x_{n}:=b_{n}\right]$ is the convolution of τ_{0} and $t_{1} \equiv t_{\tau_{1}}$. Let $F V\left(b_{i}\right) \cap$ $\left\{x_{1}, \ldots, x_{n}\right\}=\emptyset, i=1, \ldots, n$, we can achieve this by renaming bound variables otherwise. It is easy to see, that $\tau_{0}{ }^{\prime} \equiv\left(\lambda x_{1}{ }^{\prime} \ldots x_{n}{ }^{\prime} . a^{\prime}\right) b_{1}{ }^{\prime} \ldots b_{n}{ }^{\prime}$ and $\tau_{0}{ }^{\prime} \rightarrow_{\beta} \rightarrow_{1}{ }^{\prime}$, where $\tau_{1}{ }^{\prime} \equiv a^{\prime}\left[x_{1}{ }^{\prime}:=b_{1}{ }^{\prime}, x_{2}{ }^{\prime}:=b_{2}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}:=b_{n}{ }^{\prime}\right]$. It is also easy to see, that the term $\tau_{0}{ }^{\prime}$ has an occurrence in the term t^{\prime}, so replacing this occurrence with $\tau_{1}{ }^{\prime}$, we get the term $t_{1}{ }^{\prime}$ and therefore $t^{\prime} \rightarrow \rightarrow_{\beta} t_{1}{ }^{\prime}$. Since t_{1} reduces to τ and the reducing chain's length is $k-1$, by induction hypothesis $t_{1}{ }^{\prime} \rightarrow_{\beta} \tau^{\prime}$ and, therefore, $t^{\prime} \rightarrow_{\beta} \tau^{\prime}$.

Lemma 3.2. Let $t \in \Lambda_{M}^{T}, t \in \beta-N F, F V(t)=\emptyset, F V(\tau)=\emptyset, \tau \in N F$, then 1. $t \rightarrow \rightarrow_{\delta} m \in M \backslash\{\perp\}$ and $\tau \equiv m^{\prime} \Leftrightarrow t^{\prime} \rightarrow_{\beta} \tau$;
2. $t \rightarrow \rightarrow_{\delta} \perp \Leftrightarrow t^{\prime}$ doesn't have a head normal form.

Proof. As $t \in \beta-N F$ and $F V(t)=\emptyset$, there exists a reducing chain such that every time a δ-redex is chosen of the form $f\left(m_{1}, \ldots, m_{n}\right), m_{i} \in M, i=1, \ldots, n$. We consider such chain. Let $t \equiv t_{0} \rightarrow_{\delta} t_{1} \rightarrow_{\delta} \ldots \rightarrow_{\delta} t_{k} \equiv m, t_{i} \in \Lambda_{M}^{T}$, $i=1, \ldots, k, k \geq 0$. The proof is by induction on the reducing chain's length $k \geq 0$. Lemma $3.2(\Rightarrow)$ is obvious for the basis of the induction, i.e. if $k=0$. Let $k>0$, we suppose, that Lemma $3.2(\Rightarrow)$ holds for $k-1$. It is obvious that there exists a δ-redex τ_{0} such that τ_{0} is a subterm of the term t, the term τ_{1} is the convolution of τ_{0} and $t_{1} \equiv t_{\tau_{1}}$. It is easy to see, that $\tau_{1} \equiv m_{0} \in M$. It is also easy to see, that the term $\tau_{0}{ }^{\prime}$ has an occurrence in the term t^{\prime}, and if we replace this occurrence with $m_{0}{ }^{\prime}$, then we get the term $t_{1}{ }^{\prime}$. If $m_{0} \neq \perp$, then $f^{\prime} m_{1}{ }^{\prime} \ldots m_{n}{ }^{\prime} \rightarrow \rightarrow_{\beta} m_{0}{ }^{\prime}$. If $m_{0}=\perp$, then $f^{\prime} m_{1}{ }^{\prime} \ldots m_{n}{ }^{\prime}$ does not have a head normal form and from Lemma 2.1 it follows, that if we replace the occurrence of $m_{0}{ }^{\prime} \equiv \Omega$ in $t_{1}{ }^{\prime}$ with $f^{\prime} m_{1}{ }^{\prime} \ldots m_{n}{ }^{\prime}$, then either the resulting term will reduce to the same normal form as $t_{1}{ }^{\prime}$ or both of the terms will not have a head normal form. The term t_{1} reduces to m or \perp and the reducing chain's length is $k-1$, therefore, Lemma $3.2(\Rightarrow)$ follows from the induction hypothesis. Assuming the opposite it is easy to see that Lemma $3.2(\Leftarrow)$ directly follows from Lemma 3.2 \Rightarrow) .

Theorem 3.1. Let $t \in \Lambda_{M}^{T}, F V(t)=\emptyset, \tau \in N F$ and $F V(\tau)=\emptyset$, then

1. $t \rightarrow \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\}$ and $\tau \equiv m^{\prime} \Leftrightarrow t^{\prime} \rightarrow_{\beta} \tau$;
2. $t \rightarrow \rightarrow_{\beta \delta} \perp \Leftrightarrow t^{\prime}$ doesn't have a head normal form.

Proof. Theorem 3.1 (\Rightarrow) directly follows from Lemmas 1.1, 3.1 and 3.2. Assuming the opposite it is easy to see that Theorem $3.1(\Leftarrow)$ follows from Theorem 3.1 (\Rightarrow).

Theorem 3.2.

1. Let $t \in \Lambda_{M}^{T}, \tau \in N F$ and $F V(\tau)=\emptyset$, then $t \rightarrow_{\beta \delta} m, m \in M \backslash\{\perp\}$ and $\tau \equiv m^{\prime} \Leftrightarrow t^{\prime} \rightarrow_{\beta} \tau$.
2. There exists a term $t \in \Lambda_{M}^{T}$ such that $t \rightarrow \rightarrow_{\beta \delta} \perp$, but t^{\prime} has a head normal form.

Proof.
Point 1. (\Rightarrow) We replace all free occurrences of variables in the term t with the terms that correspond to the least elements of the according types, obtained by the operation of abstraction and the term \perp. According to Lemma 1.2, the resulting term reduces to m, and, according to Theorem 3.1, the corresponding untyped term reduces to m^{\prime}. Then, according to Lemma 2.1, the term t^{\prime} also reduces to m^{\prime}.
(\Leftarrow) According to Lemma 1.1, there exists $t_{0} \in \beta-N F^{T}$, such that $t \rightarrow \rightarrow_{\beta} t_{0}$. It follows from Lemma 3.1 that $t^{\prime} \rightarrow \rightarrow_{\beta} t_{0}^{\prime}$. Let $F V\left(t_{0}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in V_{\alpha_{i}}^{T}$, $\alpha_{i} \in$ Types, $n \geq 0$ and Ω_{i} be a term that represents the least element of α_{i}, obtained by the operation of abstraction and the term $\perp, i=1, \ldots, n$. It is easy to see, that $\left(t_{0}\left[x_{1}:=\Omega_{1}, \ldots, x_{n}:=\Omega_{n}\right]\right)^{\prime} \equiv t_{0}^{\prime}\left[x_{1}{ }^{\prime}:=\Omega_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}:=\Omega_{n}{ }^{\prime}\right]$. According to Lemma $2.2, t_{0}{ }^{\prime}\left[x_{1}{ }^{\prime}:=\Omega_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}:=\Omega_{n}{ }^{\prime}\right] \rightarrow \rightarrow_{\beta} \tau$. Let $t_{0}\left[x_{1}:=\Omega_{1}, \ldots, x_{n}:=\Omega_{n}\right] \rightarrow_{\beta \delta} m$, it follows from Theorem 3.1 that $m \neq \perp$ and $m^{\prime} \equiv \tau$. Suppose that $\Omega_{1}^{0}, \ldots, \Omega_{n}^{0}$ are the least elements of the types $\alpha_{1}, \ldots, \alpha_{n}$. Since $\Omega_{i} \sim \Omega_{i}^{0}(1 \leq i \leq n)$ and $t_{0}\left[x_{1}:=\Omega_{1}, \ldots, x_{n}:=\Omega_{n}\right] \rightarrow \rightarrow_{\beta \delta} m$, it can be shown, that $\operatorname{Val}_{<\Omega_{1}^{0}, \ldots, \Omega_{n}^{0}>}\left(t_{0}\right)=m$. For any $a_{1}, a_{2}, \ldots, a_{n}$, where $a_{i} \in \alpha_{i}, \quad i=1, \ldots, n$, we have the following: $\left\langle\Omega_{1}^{0}, \ldots, \Omega_{n}^{0}\right\rangle \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\operatorname{Val}_{\left.<a_{1} \ldots a_{n}\right\rangle}\left(t_{0}\right)=m$. Consequently, t_{0} is a constant term with m value. Since $t_{0} \in \beta-N F$, either $t_{0} \in M$, i.e $t_{0} \equiv m$, or $t_{0} \equiv f\left(t_{1}, \ldots, t_{k}\right)$, $k \geq 0, f \in C_{1}, t_{i} \in \Lambda_{M}^{T}(0 \leq i \leq k)$, and according to the feature of a natural notion of δ-reduction we have: $f\left(t_{1}, \ldots, t_{k}\right) \rightarrow \rightarrow_{\delta} m$.

To prove Point 2 of the Theorem, we give an example. Let $M=N \cup\{\perp\}$. If $n \in N$, then $n^{\prime} \equiv\langle n\rangle$, where $\langle 0\rangle \equiv \lambda x . x$ and $\langle n+1\rangle \equiv \lambda x . x F\langle n\rangle, F \equiv \lambda x y . y$. Let $C_{1}=\{f\}$, where for any $m \in M f(m)=\perp$. Let $f^{\prime} \equiv \lambda x$. (Zero $\left.x\right) \Omega \Omega$, where Zero $\equiv \lambda x \cdot x(\lambda x y z . z) T F T, T \equiv \lambda x y \cdot x$. Let $v \in V^{T}$, then it is clear, that $f(v) \rightarrow_{\beta \delta} \perp$, but the term $f^{\prime} v^{\prime}$ has a head normal form.

Theorem 3.3.

1. For any terms $t_{1}, t_{2} \in \Lambda^{T}$, such that $t_{1} \rightarrow_{\beta \delta} t_{2}$, and there exists a reducing chain from the term t_{1} to the term t_{2}, which is always choosing a δ-redex, the convolution of which is some $m \in M \backslash\{\perp\}$, we have the following: $t_{1}{ }^{\prime} \rightarrow_{\beta} \rightarrow_{\beta} t_{2}{ }^{\prime}$.
2. There exist terms $t_{1}, t_{2} \in \Lambda^{T}$ such that $t_{1} \rightarrow \rightarrow_{\beta \delta} t_{2}$, but $t_{1}{ }^{\prime}$ does not reduce to $t_{2}{ }^{\prime}$.

Proof. We prove Point 1 by induction on the length $k \geq 0$ of the reducing chain from t_{1} to t_{2}. Point 1 is obvious for the basis of the induction.

Suppose $k>0$ and the statement holds for $k-1$. Let τ_{1} be the first convoluted redex, τ_{2} be its convolution and $t_{1} \equiv t_{\tau_{1}}$. If τ_{1} is a β-redex, then it follows from Lemma 3.1 that $t_{1}^{\prime} \equiv t_{\tau_{1}^{\prime}}^{\prime} \rightarrow \rightarrow \beta t_{\tau_{2}^{\prime}}^{\prime}$ and Point 1 follows from the induction hypothesis. If τ_{1} is a δ-redex, then $\tau_{2} \in M \backslash\{\perp\}$ and it follows from Theorem 3.2, that $t_{1}{ }^{\prime} \equiv t_{\tau_{1}}^{\prime} \rightarrow \rightarrow_{\beta} t_{\tau_{2}}^{\prime}$, and Point 1 also follows from the induction hypothesis. Point 2 of Theorem 3.3 directly follows from the Point 2 of Theorem 3.2.

Received 28.04.2015

REFERENCES

1. Nigiyan S.A. Functional Languages. // Programming and Computer Software, 1991, № 5, p. 77-86.
2. Budaghyan L.E. Formalizing the Notion of δ-Reduction in Monotonic Models of Typed λ-Calculus. // Algebra, Geometry \& Their Applications. Yer.: YSU Press, 2002, v. 1, p. 48-57.
3. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland Pub. Comp., 1981.
4. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, № 1, p. 52-60.

[^0]: * E-mail: tigrankhondkaryan@gmail.com

