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The dynamical sampling problem is a new problem in sampling theory
dealing with reconstruction of a function from its spatio-temporal samples. The
question of reconstructing the signal, when the positions of measuring devices
or sensors are not changing over time has been studied earlier. The focus of this
paper is on the case when devices are allowed to move. This, for example, may
happen when devices are placed on moving cars and measure the air pollution
as they travel within a polluted area.
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Introduction. The classical problem in sampling theory is to reconstruct a
function from its values (samples) on some subset of its domain. Sometimes the
sampling set is small (when measuring devices are expensive or only a few are
available) and the samples taken at one time are not enough to do full reconstruction
of the function. But if the function, as the initial state of some system, is evolving
over time, we can take more samples at different time instances, and try to combine
those spatio-temporal samples to recover the function.

Let f ∈ V , f : X → C be an unknown function from a class of functions V
defined on the set X . Suppose f is evolving over time according to the rule

fi = Ai f , (1)

where A is a known operator on V . At time i (i = 0, . . . ,L− 1) sensors are taking
samples at (each time possibly different) locations Ωi ⊆ X :

y0 = f
∣∣∣
Ω0
, y1 = (A f )

∣∣∣
Ω1
, . . . yL−1 = (AL−1 f )

∣∣∣
ΩL−1

. (2)
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The main problem in dynamical sampling is to uniquely reconstruct the
function f ∈V from the samples (2).

When X = Zd , Ω0 = · · · = ΩL−1 = mZd , V = l2(Zd) and the operator A is
given as a convolution with some kernel, has been addressed in [1]. For the case
of shift invariant spaces with X = R, Ω0 = · · · = ΩL−1 = mZ, V = V (φ), V (φ)
being the space generated by the integer shifts of a function φ(x) and the operator
A is given as a convolution with some function, see [2–4]. In [5] the case when
Ω0 ⊇Ω1 ⊇ ·· · ⊇ΩL−1 is treated.

In [6] authors allow also the operator A to be unknown. A generalization of
Prony’s method to reconstruct the spectrum of A and eventually the function itself is
used.

We consider the case when the set X is finite and V = l2(X). Without loss of
generality X can be assumed to be the set Zd = {1, . . . ,d}, V be the l2(Zd)∼=Cd and
the operator A be given as a d×d matrix.

Later we will also assume that there are fixed M number of measuring devices,
i.e., |Ωi|= M for every i, and we are allowed to move them anywhere in X after each
measurement. For the classical sampling problem with moving devices in the class
of bandilimited functions see [7].

D e f i n i t i o n . We say that a system of subsets of X(Ω0, . . . ,ΩL−1) allows
recovery, if any function f can be uniquely reconstructed from samples (2).

When |Ωi|= 1 for every i, we call the system a path.
L e m m a . (Ω0, . . . ,ΩL−1) allows recovery, if and only if the system of vec-

tors
{(A∗)ie j} j∈Ωi, i=0,...,L−1 (3)

is complete in Cd , where A∗ is the adjoint of A and {e j} j=1,...,d is the canonical basis
of Cd .

P r o o f . Note that

Ai f ( j) = (Ai f ,e j) = ( f ,(A∗)ie j)

and these inner products uniquely determine the f , if and only if the system (3) is
complete in Cd . �

To find f from the samples (2), the transposes of vectors in (3) (as rows) can
be arranged into a big matrix A=A(Ω0, . . . ,ΩL−1) of size (|Ω0|+ · · ·+ |ΩL−1|)×d.
Then from

A f = y, (4)

where y is the vector of sampled values, f can be found by taking the left inverse
of A. The left inverse exists, if and only if A has full row rank or, equivalently,
the system (3) is complete in Rd . Note that, for the reconstruction to be stable, the
system (3) needs to form a frame for Cd . In finite dimensional space being a frame is
equivalent to being complete, but good frame bounds will provide a good condition
number for the matrix A.
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If (3) is not complete, then we can take the Moore-Penrose pseudoinverse of
A instead. Let V be the set of all f such that

f |Ω0 = y0, (A f )|Ω1 = y1, . . . (AL−1 f )|ΩL−1 = yL−1,

where yi is the vector of sampled values at time i at locations Ωi. This is an affine sub-
space of Rn. Then the solution to (4), found by taking the Moore–Penrose
pseudoinverse of A, is the vector in V closest to the origin.

Main Theorems. Because we will be working with the A∗ mainly, let’s drop
the ∗. It is the same as assuming the evolution in (1) is given by A∗ instead of A.

T h e o r e m 1. For given M there is a system (Ω0, . . . ,ΩL−1), with |Ωi|= M
i = 0, . . . ,L−1, that allows recovery, if and only if

LM ≥ d and dim(ker(A))≤M.

P r o o f . The completeness of the system (3) implies that the number of
vectors in it should be no less than the dimension of the space Rd , thus LM ≥ d.

If dim(ker(A))≤M, then in the chain

Rd = Im(A0)⊇ Im(A) · · · ⊇ Im(AL−1) (5)

the codimention of each Im(Ai+1) in Im(Ai) is at most M as

{x ∈ Im(Ai)|Ai+1(x) = 0} ⊆ ker(A).

Hence, we can select M vectors among e1, . . .ed that, if added to Im(A), span
the whole Rd . Pick the set of indexes of these vectors to be the Ω0. If d ≤ 2M,
then there are M vectors among Ae1, . . .Aed that, if added to {ei}i∈Ω0 , span the Rd .
Denote the set of indexes of these vectors by Ω1. Then, for arbitrary choice of the rest
of the sets Ωi, i ≥ 2, any function can be uniquely recovered by its samples on Ωi,
i = 0, . . .ΩL−1. If d > 2M, pick M vectors {Aei}i∈Ω1 such that {ei}i∈Ω0 ∪{Aei}i∈Ω1

is a linearly independent system and, if {ei}i∈Ω0 ∪{Aei}i∈Ω1 is added to Im(A2), it
spans the Rd . Because LM≥ d, if we continue choosing the sets Ωi as above, at some
step the vectors found this way will span the Rd , and so by Lemma 1, the samples
taken at corresponding locations Ωi will allow recovery.

If dim(ker(A)) > M, then the system (3) cannot be complete in Rd as Im(A)
will have dimension less than d−M. �

When there is only one device taking samples along paths of length L = d, is
of particular interest. In this case, by Lemma , a path ( j0, . . . , jd−1) allows recovery,
if and only if the system {Aie ji}d−1

i=0 is a basis in Rd or, equivalently, the matrix
A=A( j0, . . . , jd−1) in (4) is non-singular.

T h e o r e m 2. For a.e. matrix A ∈ Md(C) every path of length d allows
recovery.

P r o o f . From (4), the path ( j0, . . . , jd−1) does not allow recovery, if and only
if for A=A( j0, . . . , jd−1),

det(A) = 0.

The set of matrices, for which this holds, is a lower dimensional algebraic variety in
the space of all d×d matrices. Any lower dimensional algebraic variety has measure
zero, and there are only finite number of paths of length d. �
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T h e o r e m 3. For a given matrix A, there is a path that allows recovery, if
and only if in the Jordan form of A there is at most one Jordan block corresponding
to 0-eigenvalue. If the size of that Jordan block is κ , then there are at least (d−κ)!
paths of length d that allow recovery.

P r o o f . For any square matrix, number of its Jordan blocks corresponding
to 0-eigenvalue is equal to the dimension of its kernel. So, if for matrix A there is
a path that allows recovery, then from the previous theorem A can have at most one
such Jordan block. Hence in (5) dim(Im(Ai−1))−dim(Im(Ai))) is 1 for i = 1, . . . ,κ ,
and is 0 for i = κ +1, . . . ,d−1.

Following the proof of Theorem 1, there is at least one way to select the vector
e j0 such that it is not in Im(A). After e j0 has been selected, there is at least one way
to choose the vector Ae j1 that is not in Im(A2). The same way there is at least one
way to choose the vectors in

e j0 , . . . ,A
κ−1e jκ−1

such that each Ai−1e ji−1 is not in Im(Ai) i = 1, . . . ,κ .
Because the codimension of Im(Aκ+1) in Im(Aκ) is 0, there are at least d−κ

ways to select the vector Aκe jκ . After we choose it, there are at least d−κ−1 ways
we can choose the Aκ+1e jκ+1 so that the system e j0 , . . . ,A

κ−1e jκ+1 stays independent.
Then, for the Aκ+2e jκ+2 , there will be at least d−κ − 2 ways to choose it such the
system stays independent and so on. This gives a lower bound on the number of paths
that allow recovery as (d−κ)!. �

Note that, for matrices of the form

A =



0 a12 a12 . . . a1κ

0 a23 . . . a2κ

. . .
... 0

0 aκ−1,κ
0

aκ+11,κ+1

0 . . .
ad,d


,

where a′i,i+1 6= 0 i= 1, . . . ,κ−1 and a′i,i 6= 0 i= κ+1, . . . ,d, there are exactly (d−κ)!
paths that allow recovery.

T h e o r e m 4. For any non-singular matrix A there are at least d! paths that
allow recovery. Moreover, there are exactly d! such paths, if and only if A is a
diagonal matrix up to permutation of rows.

P r o o f . Suppose the number of paths allowing recovery is d!. Then, from
the proof of the previous theorem, for every ei there is an e j such that ei and Ae j are
linearly dependent:

Ae j = cei

for some c ∈ C.
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Let ei1 , . . .eim be a chain of vectors such that

Aeis+1 = cseis , s = 1, . . .m−1 and Aei1 = cmeim .

Consider the matrix Ei1imA, where Ei1im permutes the i1-th and im-th rows of a matrix
when multiplied from the left. Then

Ei1imAei1 = cmEi1imeim = cmei1 ,

Ei1imAeis+1 = csEi1imeis = cseis , s = 2, . . .m−1,

and
Ei1imAei2 = c1Ei1imei1 = c1em.

Also for every ei, which is not in the chain,

Ei1imAei = cEi1ime j = ce j = Aei.

Thus, we were able to reduce the number of elements in the chain by one. If the
process of permuting the columns of A is done for every such chain in the same way
as above, we will eventually end up with a permuted version Ā of A such that for
every i

Āei = λiei,

which implies that Ā is diagonal. �
C o r o l l a r y . A non-singular self adjoint matrix has d! paths of length d

that allow recovery, if and only if it is diagonal.
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