ON THE UNIQUENESS OF ALGEBRAIC CURVES

V. H. BAYRAMYAN * H. A. HAKOPIAN ** S. Z. TOROYAN***

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

It is well-known that $N-1 n$-independent nodes uniquely determine curve of degree n, where $N=(1 / 2)(n+1)(n+2)$. We are interested in finding the minimal number of n-independent nodes determining uniquely curve of degree $k \leq n-1$. In this paper we show that this number for $k=n-1$ is $N-4$.

MSC2010: 41A05, 14H50.
Keywords: polynomial interpolation, independent nodes, algebraic curves.

1. Introduction. Denote the space of all bivariate polynomials of total degree $\leq n$ by Π_{n} :

$$
\Pi_{n}=\left\{\sum_{i+j \leq n} a_{i j} x^{i} y^{j}\right\}
$$

We have that

$$
N:=N_{n}:=\operatorname{dim} \Pi_{n}=\binom{n+2}{2}
$$

Consider a set of s distinct nodes

$$
x_{s}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{s}, y_{s}\right)\right\}
$$

The problem of finding a polynomial $p \in \Pi_{n}$, which satisfies the conditions

$$
\begin{equation*}
p\left(x_{i}, y_{i}\right)=c_{i}, \quad i=1, \ldots, s \tag{1.1}
\end{equation*}
$$

is called interpolation problem.
Definition1.1. The interpolation problem with a set of nodes X_{s} and Π_{n} is called n-poised, if for any data $\left(c_{1}, \ldots, c_{s}\right)$, there is a unique polynomial $p \in \Pi_{n}$ satisfying the interpolation conditions (1.1).

The conditions (1.1) give a system of s linear equations with N unknowns (the coefficients of the polynomial p). The poisedness means that this system has a unique solution for arbitrary right side values. Therefore, a necessary condition of poisedness is $s=N$. If this condition holds, then we obtain from the linear system.

[^0]Proposition 1.1. A set of nodes X_{N} is n-poised, if and only if

$$
p \in \Pi_{n} \text { and }\left.p\right|_{x_{N}}=0 \quad \Longrightarrow \quad p=0
$$

A polynomial $p \in \Pi_{n}$ is called an n-fundamental polynomial for a node $A=\left(x_{k}, y_{k}\right) \in X_{s}$, if

$$
p\left(x_{i}, y_{i}\right)=\delta_{i k}, i=1, \ldots, s
$$

where δ is the Kronecker symbol. We denote this fundamental polynomial by $p_{k}^{\star}=p_{A}^{\star}=p_{A}^{\star}, x_{s}$. Sometimes we call fundamental also a polynomial that vanishes at all nodes of \mathscr{X}_{s} but one, since it is a nonzero constant times a fundamental polynomial.

Next, let us consider an important concept of n-independence (see [1,2]).
Definition 1.2. A set of nodes X is called n-independent, if all its nodes have n-fundamental polynomials. Otherwise, if a node has no n-fundamental polynomial, then X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary condition for n-independence of X_{s} is $s \leq N$.

Suppose a node set X_{s} is n-independent. Then, by the Lagrange formula we obtain a polynomial $p \in \Pi_{n}$ satisfying the interpolation conditions (1.2):

$$
p=\sum_{i=1}^{s} c_{i} p_{i}^{\star}
$$

In view of this, we get readily that the node set X_{s} is n-independent, if and only if the interpolating problem (1.2) is solvable, meaning that for any data $\left(c_{1}, \ldots, c_{s}\right)$ there is a polynomial $p \in \Pi_{n}$ (not necessarily unique) satisfying the interpolation conditions (1.2). Also, in view of Proposition 1.1, we have that a set X_{N} is n-poised, if and only if it is n-independent.

Evidently, any subset of n-poised set is n-independent. According to the following lemma any n-independent set is a subset of some n-poised set (see e.g., [3], Lemma 2.1).

Lemma 1.1. Any n-independent set X_{s} with $s<N$ can be extended to an n-poised set.

Below a well-known construction of n-poised set is described (see [4,5]).
Definition 1.3. A set of $N=1+\cdots+(n+1)$ nodes is called BerzolariRadon set for degree n, or briefly $B R_{n}$ set, if there exist lines $l_{1}, l_{2}, \ldots, l_{n+1}$, such that the sets $l_{1}, l_{2} \backslash l_{1}, l_{3} \backslash\left(l_{1} \cup l_{2}\right), \ldots, l_{n+1} \backslash\left(l_{1} \cup \cdots \cup l_{n}\right)$ contain exactly $(n+1), n, n-1, \ldots, 1$ nodes respectively.

An algebraic curve in the plane is the zero set of some bivariate polynomial of degree at least 1 . We use the same letter, say p, to denote the polynomial $p \in \Pi_{n} \backslash \Pi_{0}$ and the corresponding curve p defined by equation $p(x, y)=0$.

According to the following well-known statement, there are no more than $n+1 n$-independent points in any line:

Proposition1.2. Assume that l is a line and X_{n+1} is any subset of l containing $n+1$ points. Then we have that

$$
p \in \Pi_{n} \quad \text { and } \quad p \mid x_{n+1}=0 \Rightarrow p=l r, \quad \text { where } r \in \Pi_{n-1}
$$

Denote

$$
d:=d(n, k):=\operatorname{dim} \Pi_{n}-\operatorname{dim} \Pi_{n-k}=\frac{k(2 n+3-k)}{2} .
$$

The following is a generalization of Proposition 1.2.
Proposition 1.3([6], Prop. 3.1). Let q be an algebraic curve of degree $k \leq n$ without multiple components. Then the following hold:
i) any subset of q containing more than $d(n, k)$ nodes is n-dependent,
ii) any subset X_{d} of q containing exactly $d(n, k)$ nodes is n-independent, if and only if the following condition holds:

$$
p \in \Pi_{n} \quad \text { and }\left.\quad p\right|_{X_{d}}=0 \Rightarrow p=q r, \text { where } r \in \Pi_{n-k}
$$

Suppose that X is an n-poised set of nodes and q is an algebraic curve of degree $k \leq n$. Then of course any subset of X is n-independent too. Therefore, according to Proposition 1.3 i), at most $d(n, k)$ nodes of X can lie in the curve q. Let us mention that a special case of this when q is a set of k lines is proved in [7].

Next lemma follows readily from the fact that the Vandermonde determinant, i.e., the main determinant of the linear system described after Definition 1.1, is a continuous function of the nodes of X_{N} (see e.g., [8], Remark 1.14).

Lemma 1.2. Suppose $X_{N}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$ is n-poised. Then there is a positive number ε such that any set $X_{N}^{\prime}=\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\}_{i=1}^{N}$, for which the distance between $\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$ and $\left(x_{i}, y_{i}\right)$ is less than ε, is n-poised too.

Finally, let us bring a lemma that follows from a simple Linear Algebra argument (see e.g., [9], Lemma 2.10).

Lemma1.3. Suppose that two different curves of degree k pass through all the nodes of X_{s}. Then for any node $A \notin X$ there is a curve of degree k passing through A and all the nodes of X.
2. The Result. From Lemma 1.3 and Proposition 1.1 we get readily that any $N-1 n$-independent nodes uniquely determine a curve of degree n. Below we find the minimal number of n-independent nodes that uniquely determine the curve of degree $n-1$ passing through them.

Proposition 2.1. Assume that X is any set of $N-4 n$-independent nodes lying in a curve of degree $n-1$. Then the curve is determined uniquely. Moreover, there is a set X^{*} of $N-5 n$-independent nodes such that more than one curves of degree $n-1$ pass through all its nodes.

Proof. Let us start with the part "moreover". Consider the part of BerzolariRadon set $B R_{n}$ belonging to $n-2$ lines there: $\ell_{1}, \ldots, \ell_{n-2}$, i.e.,

$$
X^{\prime}=B R_{n} \cap\left[\ell_{1} \cup \cdots \cup \ell_{n-2}\right] .
$$

We have that the set X^{\prime} consists of $\# X_{0}=(n+1)+n+\cdots+4=N-6$ nodes. We get a desired set X^{*} by adding to these $N-6$ nodes an other node A from $B R_{n}$, i.e.,
$X^{*}:=X^{\prime} \cup\{A\}$. Now, we have that the set X^{*} is n-independent, since it is a subset of n-poised set $B R_{n}$, and $\# X^{*}=N-5$. Finally, consider the curves of degree $n-1$ of the form ℓq_{n-2}, where ℓ is any line passing through A and $q_{n-2}=\ell_{1} \cdots \ell_{n-2}$. It remains to notice that all these curves of degree $n-1$ pass through all the nodes of X^{*}.

Now let us prove the first statement of the Proposition. Suppose by the way of contradiction, that there are two different curves of degree $n-1$ passing through all the nodes of X. Let us extend the set X, according to Lemma 1.1 till an n-poised set X_{N}, by adding 4 nodes to X denoted by A and B_{1}, B_{2}, B_{3}. In view of Lemma 1.2, there is a curve $p_{i} \in \Pi_{n-1}$ passing through B_{i} and all the nodes of $\mathcal{X}, i=1,2,3$.

Denote by $\ell_{i j}$ the line passing through the nodes B_{i} and $B_{j}, 1 \leq i \neq j \leq 3$. Note that, in view of Lemma 1.2, we may assume that B_{1}, B_{2}, B_{3} are chosen such that they are not collinear and the lines $\ell_{12}, \ell_{23}, \ell_{31}$ do not pass through any node of X, i.e.,

$$
\begin{equation*}
X \cap \ell_{i j}=\emptyset, 1 \leq i<j \leq 3 . \tag{2.1}
\end{equation*}
$$

Now we readily get the following three representations of the fundamental polynomial p_{A}^{\star} :

$$
\begin{aligned}
p_{A}^{\star} & =\ell_{23} \cdot p_{1}, \\
p_{A}^{\star} & =\ell_{31} \cdot p_{2}, \\
p_{A}^{\star} & =\ell_{12} \cdot p_{3} .
\end{aligned}
$$

Indeed, clearly the products in the right hand sides of the equalities are nonzero polynomials from Π_{n} that vanish at all the nodes of $X_{1} \backslash\{A\}$. On the other hand, in view of Proposition 1.1, they do not vanish at A since the set X_{N} is n-poised.

From the uniqueness of the fundamental polynomials of n-poised sets and the fact that the lines $\ell_{i j}$ are distinct, we obtain readily that

$$
p_{A}^{\star}=\ell_{12} \ell_{23} \ell_{31} \cdot q, \text { where } q \in \Pi_{n-3} .
$$

From here we get, in view of (2.1), that q vanishes at all the nodes of X. This is a contradiction, since according to Proposition 1.3 i), a polynomial from Π_{n-3} may vanish at most at $d(n, n-3)=N-10 n$-independent nodes.

At the end we would like to put forward
Conjecture2.1. The minimal number of n-independent nodes determining uniquely curve of degree $k, k \leq n-2$, equals $N-\binom{n-k+3}{2}+2$.

Received 27.01.2015

REFERENCES

1. Eisenbud D., Green M., Harris J. Cayley-Bacharach Theorems and Conjectures. // Bull. Amer. Math. Soc. (N.S.), 1996, v. 33, p. 295-324.
2. Hakopian H., Malinyan A. Characterization of n-Independent Sets with no More Than $3 n$ Points. // Jaen J. Approx., 2012, v. 4, p. 121-136.
3. Hakopian H., Jetter K., Zimmermann G. Vandermonde Matrices for Intersection Points of Curves. // Jaen J. Approx., 2009, v. 1, p. 67-81.
4. Berzolari L. Sulla Determinazione di Una Curva o di Una Superficie Algebrica e su Alcune Questioni di Postulazione. // Rend. del R. Ist. Lombardo di Scienze e Lettere, 1914, v. 47, p. 556-564.
5. Radon J. Zur Mechanischen Kubatur. // Monatsh. Math., 1948, v. 52, p. 286-300.
6. Rafayelyan L. Poised Nodes Set Constructions on Algebraic Curves. // East J. on Approx., 2011, v. 17, p. 285-298.
7. Carnicer J.M., Gasca M. Planar Configurations with Simple Lagrange Interpolation Formulae. In: Mathematical Methods in Curves and Surfaces (eds. T. Lyche and L.L. Schumaker). Oslo: 2000, p. 1-8; Nashville: Vanderbilt University Press, 2001, p. 55-62.
8. Hakopian H. Multivariate Divided Differences and Multivariate Interpolation of Lagrange and Hermite Type. // J. Approx. Theory, 1982, v. 34, p. 286-305.
9. Hakopian H., Jetter K., Zimmermann G. The Gasca-Maeztu Conjecture for $n=5$. // Numer. Math., 2014, v. 127, p. 685-713.

[^0]: * E-mail: vahagnbayramyan@gmail.com, ** hakop@ysu.am, *** sofitoroyan@gmail.com

