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It is well-known that N−1 n-independent nodes uniquely determine curve
of degree n, where N = (1/2)(n + 1)(n + 2). We are interested in
finding the minimal number of n-independent nodes determining uniquely curve
of degree k≤ n−1. In this paper we show that this number for k= n−1 is N−4.

MSC2010: 41A05, 14H50.

Keywords: polynomial interpolation, independent nodes, algebraic curves.

1. Introduction. Denote the space of all bivariate polynomials of total
degree ≤ n by Πn:

Πn =

{
∑

i+ j≤n
ai jxiy j

}
.

We have that

N := Nn := dimΠn =

(
n+2

2

)
.

Consider a set of s distinct nodes

Xs = {(x1,y1),(x2,y2), . . . ,(xs,ys)}.
The problem of finding a polynomial p ∈Πn, which satisfies the conditions

p(xi,yi) = ci, i = 1, . . . ,s, (1.1)

is called interpolation problem.
D e f i n i t i o n 1 . 1 . The interpolation problem with a set of nodes Xs and

Πn is called n-poised, if for any data (c1, . . . ,cs), there is a unique polynomial p ∈Πn

satisfying the interpolation conditions (1.1).
The conditions (1.1) give a system of s linear equations with N unknowns

(the coefficients of the polynomial p). The poisedness means that this system has a
unique solution for arbitrary right side values. Therefore, a necessary condition of
poisedness is s = N. If this condition holds, then we obtain from the linear system.
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P r o p o s i t i o n 1 . 1 . A set of nodes XN is n-poised, if and only if

p ∈Πn and p
∣∣
XN

= 0 =⇒ p = 0 .

A polynomial p ∈ Πn is called an n-fundamental polynomial for a node
A = (xk,yk) ∈ Xs, if

p(xi,yi) = δik, i = 1, . . . ,s,

where δ is the Kronecker symbol. We denote this fundamental polynomial by
p?k = p?A = p?A,Xs

. Sometimes we call fundamental also a polynomial that vanishes at
all nodes of Xs but one, since it is a nonzero constant times a fundamental
polynomial.

Next, let us consider an important concept of n-independence (see [1, 2]).
D e f i n i t i o n 1 . 2 . A set of nodes X is called n-independent, if all its

nodes have n-fundamental polynomials. Otherwise, if a node has no n-fundamental
polynomial, then X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary
condition for n-independence of Xs is s≤ N.

Suppose a node set Xs is n-independent. Then, by the Lagrange formula we
obtain a polynomial p ∈Πn satisfying the interpolation conditions (1.2):

p =
s

∑
i=1

ci p?i .

In view of this, we get readily that the node set Xs is n-independent, if and only if the
interpolating problem (1.2) is solvable, meaning that for any data (c1, . . . ,cs) there is
a polynomial p ∈ Πn (not necessarily unique) satisfying the interpolation conditions
(1.2). Also, in view of Proposition 1.1, we have that a set XN is n-poised, if and
only if it is n-independent.

Evidently, any subset of n-poised set is n-independent. According to the fol-
lowing lemma any n-independent set is a subset of some n-poised set (see e.g., [3],
Lemma 2.1).

L e m m a 1 . 1 . Any n-independent set Xs with s < N can be extended to an
n-poised set.

Below a well-known construction of n-poised set is described (see [4, 5]).
D e f i n i t i o n 1 . 3 . A set of N = 1+ · · ·+(n+1) nodes is called Berzolari–

Radon set for degree n, or briefly BRn set, if there exist lines l1, l2, . . . , ln+1, such that
the sets l1, l2 \ l1, l3 \ (l1 ∪ l2), . . . , ln+1 \ (l1 ∪ ·· · ∪ ln) contain exactly
(n+1),n,n−1, . . . ,1 nodes respectively.

An algebraic curve in the plane is the zero set of some bivariate polynomial of
degree at least 1. We use the same letter, say p, to denote the polynomial p ∈Πn \Π0
and the corresponding curve p defined by equation p(x,y) = 0.

According to the following well-known statement, there are no more than
n+1 n-independent points in any line:
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P r o p o s i t i o n 1 . 2 . Assume that l is a line and Xn+1 is any subset of l
containing n+1 points. Then we have that

p ∈Πn and p|Xn+1 = 0 ⇒ p = lr, where r ∈Πn−1.

Denote

d := d(n,k) := dimΠn−dimΠn−k =
k(2n+3− k)

2
.

The following is a generalization of Proposition 1.2.
P r o p o s i t i o n 1 . 3 ( [6], Prop. 3.1). Let q be an algebraic curve of degree

k ≤ n without multiple components. Then the following hold:
i) any subset of q containing more than d(n,k) nodes is n-dependent,
ii) any subset Xd of q containing exactly d(n,k) nodes is n-independent, if and

only if the following condition holds:

p ∈Πn and p
∣∣
Xd

= 0⇒ p = qr, where r ∈Πn−k.

Suppose that X is an n-poised set of nodes and q is an algebraic curve of degree
k ≤ n. Then of course any subset of X is n-independent too. Therefore, according to
Proposition 1.3 i), at most d(n,k) nodes of X can lie in the curve q. Let us mention
that a special case of this when q is a set of k lines is proved in [7].

Next lemma follows readily from the fact that the Vandermonde determinant,
i.e., the main determinant of the linear system described after Definition 1.1, is a
continuous function of the nodes of XN (see e.g., [8], Remark 1.14).

L e m m a 1 . 2 . Suppose XN = {(xi,yi)}N
i=1 is n-poised. Then there is a

positive number ε such that any set X′N = {(x′i,y′i)}N
i=1, for which the distance between

(x′i,y
′
i) and (xi,yi) is less than ε, is n-poised too.

Finally, let us bring a lemma that follows from a simple Linear Algebra
argument (see e.g., [9], Lemma 2.10).

L e m m a 1 . 3 . Suppose that two different curves of degree k pass through
all the nodes of Xs. Then for any node A /∈ X there is a curve of degree k passing
through A and all the nodes of X.

2. The Result. From Lemma 1.3 and Proposition 1.1 we get readily that any
N− 1 n-independent nodes uniquely determine a curve of degree n. Below we find
the minimal number of n-independent nodes that uniquely determine the curve of
degree n−1 passing through them.

P r o p o s i t i o n 2 . 1 . Assume that X is any set of N − 4 n-independent
nodes lying in a curve of degree n−1. Then the curve is determined uniquely. More-
over, there is a set X∗ of N−5 n-independent nodes such that more than one curves
of degree n−1 pass through all its nodes.

P r o o f . Let us start with the part “moreover”. Consider the part of Berzolari–
Radon set BRn belonging to n−2 lines there: `1, . . . , `n−2, i.e.,

X′ = BRn∩ [`1∪·· ·∪ `n−2] .

We have that the set X′ consists of #X0 = (n+ 1)+ n+ · · ·+ 4 = N− 6 nodes. We
get a desired set X∗ by adding to these N− 6 nodes an other node A from BRn, i.e.,
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X∗ :=X′∪{A}. Now, we have that the set X∗ is n-independent, since it is a subset of
n-poised set BRn, and #X∗ = N−5. Finally, consider the curves of degree n−1 of the
form `qn−2, where ` is any line passing through A and qn−2 = `1 · · ·`n−2. It remains
to notice that all these curves of degree n−1 pass through all the nodes of X∗.

Now let us prove the first statement of the Proposition. Suppose by the way
of contradiction, that there are two different curves of degree n− 1 passing through
all the nodes of X. Let us extend the set X, according to Lemma 1.1 till an n-poised
set XN , by adding 4 nodes to X denoted by A and B1,B2,B3. In view of Lemma 1.2,
there is a curve pi ∈Πn−1 passing through Bi and all the nodes of X, i = 1,2,3.

Denote by `i j the line passing through the nodes Bi and B j, 1≤ i 6= j≤ 3. Note
that, in view of Lemma 1.2, we may assume that B1,B2,B3 are chosen such that they
are not collinear and the lines `12, `23, `31 do not pass through any node of X, i.e.,

X∩ `i j = /0, 1≤ i < j ≤ 3. (2.1)
Now we readily get the following three representations of the fundamental

polynomial p?A :
p?A = `23 · p1,

p?A = `31 · p2,

p?A = `12 · p3.

Indeed, clearly the products in the right hand sides of the equalities are nonzero poly-
nomials from Πn that vanish at all the nodes of X1 \{A}. On the other hand, in view
of Proposition 1.1, they do not vanish at A since the set XN is n-poised.

From the uniqueness of the fundamental polynomials of n-poised sets and the
fact that the lines `i j are distinct, we obtain readily that

p?A = `12`23`31 ·q, where q ∈Πn−3.

From here we get, in view of (2.1), that q vanishes at all the nodes of X. This is
a contradiction, since according to Proposition 1.3 i), a polynomial from Πn−3 may
vanish at most at d(n,n−3) = N−10 n-independent nodes. �

At the end we would like to put forward
C o n j e c t u r e 2 . 1 . The minimal number of n-independent nodes deter-

mining uniquely curve of degree k, k ≤ n−2, equals N−
(n−k+3

2

)
+2.
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