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1. Introduction. Almost everywhere (a. e.) convergence and divergence
problems of Fourier series in different classical orthonormal systems is one of the
basic fields in Harmonic analysis. Carleson proved in [1] that the partial sums of the
trigonometric Fourier series of a function f ∈ L2(0,2π) converge a.e. This funda-
mental theorem became a basis in the further study of a.e. convergence properties
of the trigonometric and Walsh series. Hunt, Sjölin and Antonov [2] established a.e.
convergence of Fourier series of functions from wider classes than L2. For the Walsh
system analogous problems were studied in [3–6]. Convergence a.e. of the cubical
partial sums of the trigonometric and Walsh Fourier series were investigated in [7–9].
In particular, Sjölin [7] proved that such partial sums of trigonometric Fourier series
of a function from Lp(0,2π), p > 1, converge a.e. In the case of Walsh system the
analogous is known only for the functions from L2 (Tevzadze [9]). The problem of
a.e. convergence of cubical partial sums of the Fourier–Walsh series of a function
f ∈ Lp with p > 2 is still open. Fefferman [10] constructed a continuous function,
which double trigonometric Fourier series diverges everywhere by cubes. An
analogous example for Walsh system is constructed by Getzadze [11]. The a.e. con-
vergence of Cezaro means of the isosceles triangular sums of double Fourier–Walsh
series considered in the papers [12–15].
∗ E-mail: g.karagulyan@yahoo.com ∗∗ E-mail: karenmuradyan1988@mail.ru
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In the present paper we consider a.e. divergence problems for the sectorial
and arbitrary triangular partial sums of the double Fourier series in Haar and Walsh
systems. Let φ = {φn(x),n ∈ N} be an orthonormal system. For a given region
G⊂ N2 denote by

SG(x,y,φ , f ) = ∑
(n,m)∈G

anmφn(x)φm(y), anm =
∫ 1

0
f (t,s)φn(t)φm(s)dtds,

the partial sum of double Fourier series of a function f ∈ L1(R2) corresponding to
the region G. We shall consider sectorial and triangular regions

V (α,β ) =
{
(n,m) : n,m ∈ N̄,

m
n
∈ (tanα, tanβ )

}
, 0≤ α < β ≤ π

2
,

∆(u,v) =
{

n,m ∈ N̄ :
n
v
+

m
u
≤ 1
}
, u,v > 0,

where N̄ = N in the case of Haar system and N̄ = N∪{0}, while Walsh system is
considered. We say an increasing sequence of regions Gk is complete, if ∪kGk = N̄2.
We denote by IF(x,y) the indicator function of a set F ⊂ (0,1)2. Haar and Walsh
systems will be defined below and denoted correspondingly by χ = {χn(x) : n =
= 1,2, . . .} and w = {wn(x) : n = 0,1, . . .}. The following theorem shows that the
double Fourier–Haar series of a bounded function may diverge almost everywhere.
Moreover, we prove

T h e o r e m 1 . If Vk is a complete increasing sequence of sectors, then there
exists a measurable set F ⊂ (0,1)2 such that

limsup
k→∞

|SVk(x,y,χ,IF)|= ∞ a.e. on (0,1)2.

In the next two theorems we establish analogous theorems for the double series
in Walsh system for the sectorial and triangular partial sums.

T h e o r e m 2 . For an arbitrary sequence of sectors Vk there exists a set
F ⊂ (0,1)2 such that

limsup
k→∞

|SVk(x,y,w,IF)|= ∞ a.e. on (0,1)2.

T h e o r e m 3 . There exists a function f ∈ L∞(0,1)2 and an increasing
sequence of triangular regions ∆k such that

limsup
k→∞

|S∆k(x,y,w,IE)|= ∞ a.e. on (0,1)2.

In the proofs of these Theorems we use a technique of divergent rearrange-

ments of Haar series. We say, that a functional series
∞

∑
n=1

fn(x) unconditionally con-

verges a.e. on E, if a.e. convergence holds on E for any rearrangements of the terms
of series. In [16], (see also [17], p. 104) it is established that for the Haar series a.e.
unconditionally convergence is equivalent to a.e. absolute convergence.

An example of function from L2[0,1], which Fourier–Haar series diverges a.e.
after a suitable rearrangement of the terms is constructed in [18]. This result for
arbitrary complete orthonormal systems was extended in [19, 20], additionally the
constructed function continuity is guarantied. In [21] it is proved.
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T h e o r e m A . There exists a measurable set E ⊂ [0,1] such that
∞

∑
k=0
|ak(IE)χk(x)|= ∞ a.e. on [0,1].

In the proofs of the theorems we use also different Haar type systems, which
spectrums are in some sectorial or triangular regions. For these constructions we
apply technique, which previously were used in [22, 23].

2. Definitions of Haar and Walsh Systems. Dyadic intervals are the intervals
of the form

∆n = ∆
i
k =

(
i−1
2k ,

i
2k

)
,

where n = 2k + i, 1 ≤ i ≤ 2k, k = 0,1,2 . . . The first Haar function is defined by
χ1(x)≡ 1. For n≥ 2 we define

χn(x) =


2k/2, if x ∈ (∆n)

−,

−2k/2, if x ∈ (∆n)
+,

0, if x 6∈ ∆̄n,

where (∆n)
− and (∆n)

+ are left and right halves of ∆n. We do not need to define
Haar functions at the points of discontinuity, since the present paper studies only a.e.
behavior of Haar series. We shall use also Haar system normalized in L∞. We denote
these functions by

χ̃n(x) = 2−k/2
χn(x), n = 1,2, . . .

Recall also the definitions of Rademacher and Walsh systems (see [14] or [24]).
Consider a function

r0(x) =
{

1, if x ∈ [0,1/2),
−1, if x ∈ [1/2,1),

periodically continued over the real line. The Rademacher functions are defined by
rk(x) = r0(2kx), k = 0,1,2, . . . The Walsh functions are defined by the products of
Rademacher functions. We set w0(x) ≡ 1. To define wn(x) as n ≥ 1 we write n in

the dyadic form n =
k

∑
j=0

ε j2 j, where εk = 1 and ε j = 0 or 1, if j = 0,1, . . . ,k− 1,

and denote wn(x) =
k

∏
j=0

(r j(x))ε j . The dyadic addition for the numbers x,y > 0 with

dyadic decompositions x =
∞

∑
k=−∞

θk(x)2−k, y =
∞

∑
k=−∞

θk(y)2−k are defined by

x⊕ y =
∞

∑
k=−∞

|θk(x)−θk(y)|2−k.

3. Auxiliary Lemmas. Recall the definition of the Haar type system on (0,1)2

by [17]. Given a family of measurable sets En = E i
k ⊂ (0,1)2, i = 1,2, . . . ,2k,
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k = 0,1, . . . , where n = 2k + i, 1≤ i≤ 2k, k = 0,1,2 . . . , and

|E i
k|= 2−k,

E i
k = E2i−1

k+1 ∪E2i
k+1, (1)

E i
k∩E j

k =∅, if i 6= j.

Denote
ξ1(x,y) = 1,

ξn(x,y) =


2k/2, if (x,y) ∈ E2i−1

k+1 ,

−2k/2, if (x,y) ∈ E2i
k+1,

0, if (x,y) 6∈ E i
k.

The system
{

ξn(x,y)
}∞

n=1 is said to be Haar type system. If

n = 2k + j, 1≤ j ≤ 2k, (2)

then we denote

n̄ = 2k−1 +

[
j+1

2

]
, (3)

where [·] denotes the integer part of a number. It is easy to observe that the number n̄
may be equivalently defined by the relations En ⊂ En̄, |En|= |En̄|/2, where Ek are
the sets, defined in (1). This remark immediately implies:

L e m m a 1 . For the functions ξn(x,y), n = 1,2, . . ., defined on (0,1)2, to
form Haar type system it is necessary and sufficient to satisfy the conditions

|suppξn|= 2−k,

|{ξn(x,y) = 2k/2}|= |{ξn(x,y) =−2k/2}|= 2−k−1,

suppξn ⊂ {(−1) j+1 ·ξn̄ > 0},

where k and j are defined in (2).
L e m m a 2 . If 0 < α < β/8, β < π/4, then for an arbitrary number M > 0

there exist natural numbers l,m > M such that

[2l,2l+1]× [2m,2m+1]⊂V (α,β ). (4)

P r o o f . It is clear, that for any l ∈ N there exists a number m ∈ N such that

2m−1 ≤ tanα ·2l+1 < 2m. (5)

It is easy to observe that

2 tan(x/2)< tanx =
2tan(x/2)

1− tan2(x/2)
, 0 < x < π/2,

which implies also 8tan(x/8) < tanx. From this inequality and (5), using the
hypothesis of the lemma, we obtain

2m+1 ≤ 4tanα ·2l+1 < tanβ ·2l. (6)
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The inequalities (5) and (6) imply

tanα <
2m

2l+1 ,
2m+1

2l < tanβ .

Thus we conclude, each vertex of the rectangle (4) is in the sector V (α,β ), which
implies (4). �

L e m m a 3 . If Uk = V (αk+1,αk) is an arbitrary sequence of sectors with
0 < αk+1 < αk/8, then there exists a Haar type system ξn(x,y), n = 1,2, . . . , such that

ξk(x,y) = ∑
(p,q)∈Dk

bi jχp(x)χq(y), Dk ⊂Uk, k = 2,3, . . . (7)

P r o o f . We construct ξn(x,y) by induction. Applying Lemma 2, we find
natural numbers l2 and m2, satisfying

[2l2 ,2l2+1]× [2m2 ,2m2+1]⊂U2. (8)

We set

ξ2(x,y) =
2l2+1

∑
i=2l2+1

2m2+1

∑
j=2m2+1

χ̃i(x)χ̃ j(y).

Obviously we have (7), if k = 2. Then we suppose, that we have already constructed
the functions ξk(x,y), k = 1,2, . . . ,n−1, satisfying (7). Since each of these functions
are Haar polynomial, they are constant on dyadic rectangles(

i−1
2ln

,
i

2ln

)
×
(

j−1
2mn

,
j

2mn

)
, i = 1,2, . . . ,2ln , j = 1,2, . . . ,2mn ,

if we take ln,mn ∈ N to be sufficiently large. Using Lemma 2, we may additionally
provide [2ln ,2ln+1]× [2mn ,2mn+1]⊂Un.

Define ξn(x,y) = 2n/2

(
2ln+1

∑
i=2ln+1

2mn+1

∑
j=2mn+1

χ̃i(x)χ̃ j(y)

)
· IE(x,y), where

E = {(−1) j+1 ·ξn̄(x,y)> 0}, (9)

and the number n̄ is defined in (2) and (3). We note, that n̄ < n, and so, the function
ξn̄(x,y) is defined according the assumption of the induction. By Lemma 1 it is clear
that the system obtained in this way satisfies the conditions of the Lemma. �

A similar lemma for arbitrary sectors may be proved also for Walsh system.
L e m m a 4 . For any sequence of sectors Uk there exists a Haar type system

ξn(x,y), n = 1,2, . . . , such that

ξk(x,y) = ∑
(p,q)∈Dk

bi jwp(x)wq(y), Dk ⊂Uk, k = 2,3, . . .

P r o o f . The system ξk(x,y) again will be constructed by the induction. We
define ξ2(x,y) to be an arbitrary function of the double Walsh system wn(x)wm(y)
with indexes (n,m) ∈U2. Then we suppose the functions ξk(x,y), k = 1,2, . . . ,n−1,
have been already constructed. Since each of these functions is Haar polynomial,
they are constant on dyadic rectangles(

i−1
2ln

,
i

2ln

)
×
(

j−1
2mn

,
j

2mn

)
, i = 1,2, . . . ,2ln , j = 1,2, . . . ,2mn ,
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for enough large numbers ln,mn ∈ N. Such that the sectors Uk are arbitrary we can
not provide (8) always. We define the function ξn(x,y) by

ξn(x,y) = 2n/2

(
2ln+1

∑
i=2ln+1

2mn+1

∑
j=2mn+1

χ̃i(x)χ̃ j(y)

)
· IE(x,y) ·wp(x)wq(x),

where the set E is defined like (9). It is clear, that this function is polynomial in
double Walsh system and its spectrum is in the sector Un for suitable choices of p
and q. Obviously the obtained system satisfies the conditions of the Lemma. �

L e m m a 5 . Let l,n ∈ N, n > 2 and σ is a rearrangement of the numbers
2,3 . . . ,n. Then there exists an increasing sequence of triangles ∆k, k = 1,2, . . . ,n,
which sides are bigger than L and a Haar type system ξk(x,y) such that

ξσ(k)(x,y) = w2l−1(x) ∑
(p,q)∈Bk

bpqwp(x)wq(y), Bk ⊂ ∆k \∆k−1, k = 2,3, . . . ,n, (10)

where l ∈ N is an integer.

P r o o f . We consider the sequence of sectors Vk =V
(

0,
π

4
− 1

k

)
, where

k = 1,2, . . . ,n, and let Uk =Vk \Vk−1, k = 2,3, . . . ,n. Applying the Lemma 4, we find
a Haar type system of the form

ξk(x,y) = ∑
(p,q)∈Dk

bpqwp(x)wq(y), Dk ⊂Uσ−1(k), k = 2,3, . . . ,n.

We note, that the last can be written in the form
ξσ(k)(x,y) = ∑

(p,q)∈Dσ(k)

bpqwp(x)wq(y), Dσ(k) ⊂Uk, k = 2,3, . . . ,n.

We take the number l such that
n⋃

k=2

Dk ⊂ [0,2l)2. Denote

Bk =
{
(p,q) ∈ N2 : (2l− p−1,q) ∈ Dσ(k)

}
, k = 1,2, . . . ,n,

∆k =
{
(p,q) ∈ N2 : 1≤ p,q < 2l, (2l− p−1,q) ∈Vk

}
, k = 1,2, . . . ,n.

It is clear, that ∆k is an increasing sequence of triangular regions and their sides
can be bigger than given number L, if l is sufficiently big. Thus, using the relation
Dσ(k) ⊂Uk, we obtain

Bk ⊂ ∆k \∆k−1, k = 2,3, . . . ,n. (11)
Considering the dyadic decomposition, we easily get

2l− p−1 = p⊕ (2l−1)
for any 0≤ p < 2l . This implies

w2l−1(x)ξσ(k)(x,y) = ∑
(p,q)∈Dσ(k)

bpqwp⊕(2l−1)(x)wq(y) =

= ∑
(p,q)∈Dσ(k)

bpqw2l−p−1(x)wq(y) =

= ∑
(p,q)∈Bk

b̃pqwp(x)wq(y), k = 2,3, . . . ,n.
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The last equality together with (11) gives (10). �

L e m m a 6 . ( [17], p. 105) For any Haar polynomial
M

∑
n=N

bnχn(x) there exists

a rearrangement σ(n) of the numbers N,N +1, ...,M such that

max
N<p≤q≤M

∣∣∣∣∣ q

∑
n=p

bσ(n)χσ(n)(x)

∣∣∣∣∣≥ 1
4

M

∑
n=N
|bnχn(x)|

for any x ∈ [0,1].
From Theorem A it easily follows
L e m m a 7 . For any natural number N there exists a Haar polynomial

Qm(x) =
c(N)

∑
i=N

aiχi(x),

which satisfies the conditions

‖Qm‖∞ ≤ 1,∣∣∣∣∣
{

x ∈ (0,1) :
c(N)

∑
N
|aiχi(x)|> N

}∣∣∣∣∣> 1− 1
N
.

4. Proof of the Theorems.
P r o o f o f T h e o r e m 1 . Without loss of generality we may suppose that

Vk =V (αk,π/2), αk+1 < αk/8, k = 1,2, . . .

Then we consider the sectors

U1 =V1, Uk =Vk \Vk−1 =V (αk−1,αk), k = 2,3, . . . (12)

According to Theorem A, there exists a series in Haar system
∞

∑
k=1

ckχk(x),

which is an indicator function of a measurable set and diverges a.e. after some rear-
rangement σ . According the nature of Haar type system the series

∞

∑
k=1

ckξk(x,y) (13)

with the same coefficients converges in L1 norm to an indicator function on (0,1)2,
while the series

∞

∑
k=1

cσ(k)ξσ(k)(x,y), (14)

where σ is the same rearrangement, diverges a.e. on (0,1)2. By Lemma 3, there
exists a the Haar type system

ξk(x,y) = ∑
(p,q)∈Dk

bi jχp(x)χq(y)

with the condition
Dk ⊂Uσ−1(k), k = 2,3, . . . , (15)
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where Uk is defined in (12), and σ is the rearrangement from (14). According to (13),
the series

∞

∑
k=1

ckξk(x,y) =
∞

∑
k=1

ck ∑
(p,q)∈Dk

bi jχp(x)χq(y)

can be considered as a Fourier series of some indicator function IE(x,y) in double
Haar system. In addition, a.e. divergence of (14) implies the same for the series

∞

∑
k=1

cσ(k) ∑
(p,q)∈Dσ(k)

bi jχp(x)χq(y).

In view of Dσ(n) ⊂Un, coming from (15), it is easy to observe that

SVn(x,y,χ,IE) =
n

∑
k=1

cσ(k) ∑
(p,q)∈Dσ(k)

bi jχp(x)χq(y),

and these sums diverge a.e. as n→ ∞. �
P r o o f o f T h e o r e m 2 . To prove Theorem 2, we have just to repeat the

proof of Theorem 1, using Lemma 4 instead of Lemma 3.
P r o o f o f T h e o r e m 3 . Applying Lemma 7, we can find Haar polyno-

mial Qk(x) =
mk

∑
i=nk

aiχi(x) and sets Ek ⊂ (0,1), satisfying the conditions

|Ek|> 1−2−k,

mk < nk+1,

‖Qk‖∞ ≤ 1,
mk

∑
i=nk

|aiχi(x)|> 4k, x ∈ Ek.

Using Lemma 6, we get a rearrangement σ of numbers nk,nk + 1, . . . ,mk, which
satisfies the inequality

sup
nk≤l≤mk

∣∣∣∣∣ l

∑
i=nk

aσ(i)χσ(i)(x)

∣∣∣∣∣> 4k−1, x ∈ Ek.

Since the intervals [mk,nk] are pairwise disjoin, we will use a common notation σ to
denote these rearangemants. Using Lemma 5 countable number of times, we will get
an increasing sequence of triangular regions ∆k, k = 1,2, . . ., and a Haar type system
ξk(x,y) such that

εk(x)ξσ( j)(x,y) = ∑
(p,q)∈Bk

bpqwp(x)wq(y), (16)

B j ⊂ ∆ j \∆ j−1, nk ≤ j ≤ mk, k = 2,3, . . . ,

where |εk(x)| ≡ 1. Denote φ j(x,y) = 2−kεk(x)aσ( j)ξσ( j)(x,y), mk ≤ j ≤ nk, and

consider the function f (x,y) =
∞

∑
j=1

φ j(x,y), where the terms with indexes out of
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∪k[nk,mk] are zero. It is obvious, that this series converges uniformly to a function

f ∈ L∞(0,1)2. By (16), we have S∆l (x,y,w, f ) =
l

∑
j=1

φ j(x,y).

Thus, for any nk ≤ l ≤ mk we get

|S∆l (x,y,w, f )−S∆nk
(x,y,w, f )|= 2−k

∣∣∣∣∣ l

∑
j=nk

aσ( j)ξσ( j)(x,y)

∣∣∣∣∣ ,
and consequently

sup
nk≤l≤mk

|S∆l (x,y,w, f )−S∆nk
(x,y,w, f )|> 2k, (x,y) ∈ Ẽk,

where Ẽk ⊂ (0,1)2 is a set, obtained from Ek by the transformation corresponding to
the constructed Haar type system. Thus, we obtain |Ẽk|= |Ek|> 1−2−k. Denoting

E =
⋃
k≥1

⋂
i≥k

Ẽi,

we obviously get |E|= 1 and

limsup
l→∞

|S∆l (x,y,w, f )|= ∞, x ∈ E,

which completes the Proof of the Theorem. �
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