PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

ON A RECURSIVE APPROACH TO THE SOLUTION OF MINLA PROBLEM

H. E. SARGSYAN *

Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

Abstract

In this paper a recursive approach is suggested for the problem of Minimum Linear Arrangement (MINLA) of a graph by length. A minimality criterion of an arrangement is presented, from which a simple proof is obtained for the polynomial solvability of the problem in the class of bipartite, Γ-oriented graphs.

MSC2010: 05C78.
Keywords: MINLA, graph linear arrangement, Γ-oriented graphs.

1. Introduction. We will assume that the graphs considered in this paper are finite, oriented and do not contain multiple edges or loops. For a graph G, let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. For a vertex $v \in V(G)$, let Γ_{v}^{-}and Γ_{v}^{+}denote the sets of ancestors and predecessors of v respectively: $\Gamma_{v}^{-}=\{u \in V /(u, v) \in E(G)\}, \quad \Gamma_{v}^{+}=\{u \in V /(v, u) \in E(G)\}$. An oriented graph $G(V, E)$ is called Γ-oriented, if for any vertices $u, v \in V(G)$ either $\Gamma_{v}^{+} \subseteq \Gamma_{u}^{+}$ or $\Gamma_{u}^{+} \subseteq \Gamma_{v}^{+}$. The terms and concepts, which are not defined here can be found in [1]. The problem of a minimum linear arrangement (MINLA) of oriented graphs is defined as follows:

Proble m. For a given oriented graph $G(V, E)$ construct a one to one function $f: V \mapsto\{1,,|V(G)|\}$ such that the following two conditions are satisfied:

$$
\begin{gather*}
\forall(u, v) \in E(G), f(u)<f(v), \\
\sum_{(u, v) \in E(G)}(f(v)-f(u)) \rightarrow \mathrm{min} \tag{1.1}
\end{gather*}
$$

Any function, satisfiing (1.1), the acceptability condition, is called a labeling function for the graph G. We denote by $F(G)$ the set of all labeling functions of the graph G. The length $L(G, f)$ of the arrangement $f \in F(G)$ is defined as follows:

$$
\begin{equation*}
L(G, f)=\sum_{(u, v) \in E(G)}(f(v)-f(u)) . \tag{1.2}
\end{equation*}
$$

[^0]Let $L(G)=\min _{f \in F(G)} L(G, f)$. Define $M(G)=\{f \in F(G) / L(G)=L(G, f)\}$. It is clear that a vertex $v \in V(G)$ has different impact on the length of the arrangement depending on $f \in F(G)$, so let us introduce a weight function W : $V(G) \times F(G) \mapsto Z_{+}$by

$$
\begin{equation*}
W(v, f)=L(G, f)-L\left(G \backslash v, f_{v}\right) \tag{1.3}
\end{equation*}
$$

where $G \backslash v$ is a graph obtained from G by removing the vertex v and f_{v} is the arrangement for $G \backslash v$ defined by:

$$
f_{v}(u)=\left\{\begin{array}{llr}
f(u), & \text { if } & f(u)<f(v) \tag{1.4}\\
f(u)-1, & \text { if } & f(v)<f(u)
\end{array}\right.
$$

Obviously $f_{v} \in F(G \backslash v)$, since the acceptability condition is inherited from f. Let us define the minimum impact of the vertex $v \in V(G)$ as follows:

$$
W_{*}(v)=\min _{f \in F(G)} W(v, f)
$$

2. The Main Result. It is known that MINLA problem for oriented graphs is NP complete [2], and it remains NP complete for transitive oriented, bipartite graphs [3]. It is also known [4] that for any bipartite, Γ-oriented graph $G(V, E)$ with $V=X \cup$ $\cup Y, X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$, where $\left|\Gamma_{x_{1}}^{+}\right| \geq\left|\Gamma_{x_{2}}^{+}\right| \geq \ldots \geq\left|\Gamma_{x_{n}}^{+}\right|$, $\left|\Gamma_{y_{1}}^{-}\right| \leq\left|\Gamma_{y_{2}}^{-}\right| \leq \ldots \leq\left|\Gamma_{y_{m}}^{-}\right|$, there exists a minimum linear arrangement f of the following kind:

$$
\begin{equation*}
x_{n} x_{n-1} \ldots x_{1} y_{m} y_{m-1} \ldots y_{1} \tag{2.1}
\end{equation*}
$$

Below we present a new approach to the solved problem of MINLA of bipartite, Γ-oriented graphs (see [4]). The basic idea of the new approach is formulated in Lemma 1. Suppose that a labeling function f of some graph G satisfies the following conditions:

$$
\begin{equation*}
\exists v \in V(G) \text { with } W(v, f)=W_{*}(v) \tag{2.2}
\end{equation*}
$$

$f_{v} \in M(G \backslash v)$.
Lemma 1. Any arrangement $f \in F(G)$ satisfying the conditions (2.2) and (2.3) is a minimum arrangement for G.

Proof. From (1.3), $L(G, f)=W(v, f)+L\left(G \backslash v, f_{v}\right)=W_{*}(v)+L\left(G \backslash v, f_{v}\right)=$ $=W_{*}(v)+L(G \backslash v)$. Since for any arrangement $h \in F(G)$ the inequalities $W(v, h) \geq$ $\geq W_{*}(v)$ and $L(G \backslash v, h) \geq L(G \backslash v)$ hold by definition, we can conclude that

$$
L(G, h)=W(v, h)+L\left(G \backslash v, h_{v}\right) \geq W_{*}(v)+L(G \backslash v)=L(G, f)
$$

So, for any $h \in F(G), L(G, h) \geq L(G, f)$, which means that $f \in M(G)$.
Remark 1. Lemma 1 can be applied for arrangements of non-oriented graphs.
Lemma 2. For any bipartite, Γ-oriented graph G and any arrangement $h \in F(G), W\left(x_{n}, h\right) \geq \frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}+(n-1)\left|\Gamma_{x_{n}}^{+}\right|$, and $W\left(x_{n}, f\right)=W_{*}\left(x_{n}\right)$, where f is given by (2.1).

Proof. Since $h \in F(G)$ we have that there are vertices $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ such that $h\left(x_{i_{j}}\right)<h\left(x_{n}\right), j=1, \ldots, k$, and vertices $x_{i_{k+1}}, \ldots, x_{i_{n-1}}$ such that $h\left(x_{i_{j}}\right)>h\left(x_{n}\right)$, $j=k+1, \ldots, n-1$, and for all vertices $y \in \Gamma_{x_{n}}^{+}, h(y)>h\left(x_{i}\right), i=1, \ldots, n$.

Now let estimate the impact of x_{n} on the length of the arrangement. By removing x_{n}, we also remove $\left|\Gamma_{x_{n}}^{+}\right|$edges, the i-th of them, $1 \leq i \leq\left|\Gamma_{x_{n}}^{+}\right|$, has the length no less than $n-1-k+i$. Moreover, we are shortening by 1 all edges from $x_{i_{1}}, x_{i_{2}}, x_{i_{k}}$ to $\Gamma_{x_{n}}^{+}$. So, we are shortening at least $k\left|\Gamma_{x_{n}}^{+}\right|$edges by 1 . We have

$$
\begin{equation*}
L\left(G \backslash x_{n}, h_{x_{n}}\right) \leq L(G, h)-\frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}-(n-1)\left|\Gamma_{x_{n}}^{+}\right| . \tag{2.4}
\end{equation*}
$$

Using $W\left(x_{n}, h\right)=L(G, h)-L\left(G \backslash x_{n}, h_{x_{n}}\right)$ and (2.4), we obtain
$W\left(x_{n}, h\right) \geq L(G, h)-\left(L(G, h)-\frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}-(n-1)\left|\Gamma_{x_{n}}^{+}\right|\right)$and

$$
\begin{equation*}
W\left(x_{n}, h\right) \geq \frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}+(n-1)\left|\Gamma_{x_{n}}^{+}\right| . \tag{2.5}
\end{equation*}
$$

Since (2.5) holds for any arrangement $h \in F(G)$, then

$$
W_{*}\left(x_{n}\right) \geq \frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}+(n-1)\left|\Gamma_{x_{n}}^{+}\right| .
$$

On the other hand, it is easy to see that

$$
W\left(x_{n}, f\right)=\frac{\left|\Gamma_{x_{n}}^{+}\right|\left(\left|\Gamma_{x_{n}}^{+}\right|+1\right)}{2}++(n-1)\left|\Gamma_{x_{n}}^{+}\right| .
$$

Consequently $W\left(x_{n}, f\right)=W_{*}\left(x_{n}\right)$.
Theorem. For an arbitrary bipartite, Γ-oriented graph G, f (the labeling function f given in (2.1)) is a minimum linear arrangement.

Proof. We prove the theorem by induction on the number of vertices of X. It is easy to see that for $|X|=1, f$ is a minimum linear arrangement. Let us assume that the theorem holds for $|X|=n-1$ and let us prove it for $|X|=n$. From Lemma 2 we have that $W\left(x_{n}, f\right)=W_{*}\left(x_{n}\right)$. Since in $f_{x_{n}}$ the decreasing order of degrees of the vertices $y_{m}, y_{m-1}, \ldots, y_{1}$ in $G \backslash x_{n}$ is kept, then, by the assumption of the induction, we have $f_{x_{n}} \in M\left(G \backslash x_{n}\right)$. It means that f satisfies the conditions of Lemma 1 and, thus, f is a minimum linear arrangement of the graph G.

Remark 2. Similarly, it can be shown that f^{\prime}, given by

$$
x_{1} y_{1} \ldots y_{t_{1}} x_{2} y_{t_{1}+1} \ldots x_{n-1} y_{t_{n-2}+1} \ldots y_{t_{n-1}} x_{n} y_{t_{n-1}+1} \ldots y_{m}
$$

where $t_{i}=\left|\Gamma_{x_{1}}^{+}\right|-\left|\Gamma_{x_{i+1}}^{+}\right|$, also satisfies the conditions of Lemma 1 and $f^{\prime} \in M(G)$.

Received 13.02.2014

REFERENCES

1. West D.B. Introduction to Graph Theory. New Jersey: Prentice-Hall Inc., 1996, 512 p.
2. Even S., Shiloah Y. NP-Completeness of Several Arrangement Problems. Report 43. // Dept. of Computer Science. Israel, Haifa: Technion, 1975.
3. Sargsyan H.E., Markosyan S.Ye. Minimum Linear Arrangement of the Transitive Oriented, Bipartite Graphs. // Proceedings of the YSU. Physical and Mathematical Sciences, 2012, № 2, p. 50-54.
4. Rafayelyan L. The Minimum Linear Arrangement Problem on Bipartite oriented Graphs. // Mathematical Problems of Computer Science, 2009, v. 32, p. 23-26.

[^0]: * E-mail: hsargsian@gmail.com; hovhannes.sargsyan@improvis.am

