
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2014, № 1, p. 40–47

I n f o r m a t i c s

ON OPTIMIZATION OF MONADIC LOGIC PROGRAMS

S. A. KHACHATRYAN ∗

Chair of Programming and Information Technologies YSU, Armenia

The article is devoted to the optimization of monadic logic programs and
goals (programs and goals, which do not use functional symbols of arity > 1 and
use only predicate symbols of arity 1). A program P is terminating with respect
to a goal G, if an SLD-tree of P and G is finite. In general, monadic programs
are not terminating. Program and goal transformations are introduced, by which
a monadic program P and a variable-free monadic goal G are transformed into
P′ and G′, such that P′ is terminating with respect to G′ and P |= G, if and only
if P′ |= G′. Note that the transformed program P′ is the same for all goals.

MSC2010: 68N17.

Keywords: monadic logic programs, optimization, termination, transforma-
tion.

1. Introduction. The present article deals with the study of termination of
logic programs. We study termination of monadic programs with respect to variable-
free monadic goals. A program (a goal) is called monadic, if it does not use functional
symbols of arity > 1 and uses only predicate symbols of arity 1.

It is known that there is an algorithm, which accepts a monadic program and a
monadic goal as an input and decides whether or not the goal is a logical consequence
of the program [1].

The technical tool we shall use is called level mapping by Cavedon [2], who
studied various classes of logic programs with negation. A level mapping is a func-
tion assigning natural numbers to variable-free atoms. In [3] it is shown, that if a logic
program is recurrent, i.e. if the heads of variable-free instances of program clauses
have higher levels than the atoms occurring in the body of the same instance, then it
is terminating with respect to bounded goals, i.e. goals, whose instances are below
some fixed level. We present program and goal transformations, by which a monadic
program P and a monadic variable-free goal G are transformed into P′ and G′ such
that P′ is terminating with respect to G′ and P |= G, if and only if P′ |= G′. Note

∗ E-mail: suren1525@gmail.com

Khachatryan S. A. On Optimization of Monadic Logic Programs. 41

that the transformed program P′ is the same for all goals, in other words, program
transformation is independent of goals.

2. Notation and Background. Consider three non-intersecting sets Φ, Π

and X . Φ is a set of functional symbols each possessing an arity. For any n ≥ 0,
Φ contains a countable set of symbols of arity n. Π is a set of predicate symbols each
possessing an arity. For any n≥ 0, Π contains a countable set of symbols of arity n.
X is a countable set of variables. Terms are composed from the elements of sets Φ and
X . The atoms are defined as usual [4, 5]. A formula of the first-order predicate logic
over logical operations ¬,∨,∧,→ and quantifiers ∃ and ∀ is defined conventionally.

A ground term is a term containing no variables. A ground atom is an atom
term containing no variables. The Herbrand universe U is the set of all ground terms
and the Herbrand base B is the set of all ground atoms. A Herbrand interpretation
I is a subset of the Herbrand base. The value of a closed formula F in interpretation
I is defined as usual. An interpretation I is said to be a model of a non-empty set of
closed formulas W (I |= W,) if I is a model of formulas of W . For closed formulas
F and G, the relation F |= G means that every Herbrand model of F is a model of G
too. If W is a non-empty set of closed formulas and F is a closed formula, then the
relation W |= F means that every Herbrand model of the formulas of W is a model
of F . A non-empty set of closed formulas is called satisfiable, if it has a Herbrand
model, otherwise it is called unsatisfiable.

A direct consequence of these definitions is the following proposition.
P r o p o s i t i o n 2 . 1 . Let W be a non-empty set of closed formulas and F

be a closed formula. Then W |= F, if and only if W ∪{¬F} is unsatisfiable.
A program clause is a construct of the form A← B1, . . . , Bm, where m ≥ 0,

B1, . . . , Bm and A are atoms. The atom A is called the head, and the sequence of
atoms B1, . . . , Bm is the body of the clause. In case if m = 0, the clause is called a
fact and is denoted as A. The formula ∀(B1∧·· ·∧Bm→ A) is associated to the clause
A← B1, . . . , Bm.

A logic program is a non-empty finite set of program clauses.
A goal is a construct of the form←C1, . . . ,Ck, where C1, . . . ,Ck are atoms. A

goal, in which the sequence C1, . . . ,Ck is empty, is called an empty goal. The formula
∃(C1∧·· ·∧Ck) is associated to the non-empty goal←C1, . . . ,Ck.

A substitution θ = {x1/t1, . . . ,xn/tn} is a finite set of pairs of a variable and a
term, where ti is distinct from xi and the variables x1, . . . ,xn are also distinct. A simple
expression is either a term or an atom. If E is a simple expression, then the instance
of E by θ , denoted by Eθ , is the simple expression obtained from E by simultaneous
replacement of each occurrence of the variable xi in E by the term ti, i = 1, . . . ,n.
If Eθ is ground, then Eθ is called a ground instance of E. The composition of
substitutions is defined in a usual way [4]. If L = {E1, . . . ,Em} is a finite set of simple
expressions and θ is a substitution, then Lθ denotes the set of E1θ , . . . ,Emθ . Let L be
a finite set of simple expressions. A substitution θ is called a unifier for L, if Lθ is a
singleton. A unifier θ is called a most general unifier (mgu) for L, if for each unifier
σ of L there exists a substitution γ such that σ = θγ .

42 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2014, №1, p. 40–47.

If S is a program clause of the form A← B1, . . . ,Bm, m ≥ 0, then Sθ

denotes the clause Aθ ← B1θ , . . . ,Bmθ . If P = {S1, . . . ,Sn}, n ≥ 1, is a program,
then Pθ denotes the program consisting of S1θ , . . . ,Snθ . If G is a goal of the form
←C1, . . . ,Ck, k > 0, then Gθ denotes the goal←C1θ , . . . ,Ckθ .

We will denote the set of variables occurring in a simple expression E by
Var(E). The set of variables of a program clause S of the form A ← B1, . . . ,Bm

we will denote by Var(S) and define as Var (S) =Var (A)∪Var (B1)∪·· ·∪Var(Bm).

The set of variables of a goal G of the form ← C1, . . . ,Ck we will denote by
Var(G) and define as Var(G) =Var(C1)∪·· ·∪Var(Ck).

Let G be a non-empty goal ← C1, . . . ,Ck and S be a clause A← B1, . . . ,Bm.
Then the goal Q is obtained by SLD-resolution from G and S, if:

• Var (G)∩Var (S) = /0.
• Ci and A are unifiable, where Ci is an atom (called the selected atom)

in G, 1≤ i≤ k.
• Q is the goal ←C1θ , . . . ,Ci−1θ ,B1θ , . . . ,Bmθ ,Ci+1θ , . . . ,Ckθ ,

where θ = mgu(Ci,A).
The choice of the selected atom is performed by what is called a selection

function. Q is called an SLD-resolvent of G and S.
Let P be a program and G be a goal. An SLD-derivation of P∪{G} is a (finite

or infinite) sequence G0,G1, . . . of goals such that G0 = G and each Gi+1 is obtained
by SLD-resolution from the goal Gi and a clause of P (i≥ 0).

Let P be a logic program and G be a goal. An SLD-tree of P and G is a tree
satisfying the following conditions:

• Each node of the tree is a (possibly empty) goal.
• The root node is G.
• Let ←C1, . . . ,Ck(k ≥ 1) be a node in the tree and suppose, that

Ci(1≤ i≤ k) is the selected atom. Then for each clause
A← B1, . . . , Bm,m≥ 0, in P such that Ci and A are unifiable with mguθ ,
the node has a child ←C1θ , . . . ,Ci−1θ , B1θ , . . . ,Bmθ , Ci+1θ , . . . ,Ckθ .

• Nodes which are empty goals have no children.
To every branch of an SLD-tree there corresponds an SLD-derivation.
A program P is terminating with respect to a goal G, if an SLD-tree of P and

G is finite.
A depth is a mapping from ground terms to natural numbers depth : U → N,

defined as follows:

depth(f (t1, . . . , tn)) =
{

1+max{depth(ti)|i = 1, . . . ,n}, if n > 0;
0, if n = 0.

For example, depth(s(s(0)))= 1+depth(s(0))= 1+1+depth(0)= 1+1+0= 2.
We denote the number of elements in a finite set X as X .
3. Monadic Logic Programs. In this section we study monadic programs and

goals. Each monadic program P has a corresponding permitted set of goals, which
is denoted by ∆(P). For a monadic program P, as permitted set of goals, we regard

Khachatryan S. A. On Optimization of Monadic Logic Programs. 43

monadic goals, which use only predicate symbols appearing in P and do not contain
variables. In this section only variable-free goals are considered.

For monadic programs and goals we make a number of assumptions:
1. 0 is the only constant in programs and goals.
2. Rules do not contain ground terms.
3. Every rule contains one variable. For convenience, we also assume that

variables in different rules are identical, i.e. there is just one variable in
a program, denoted by x.

4. Terms in rules are of depth at most 1, i.e. x or f (x) for some functional
symbol f .

5. A term in every fact is the constant 0 or the variable x.
Any monadic program P1 and monadic goal G1 ∈ ∆(P1) can be transformed into
monadic program P2 and monadic goal G2 ∈ ∆(P2) satisfying the mentioned assump-
tions such that P1 |= G1, if and only if P2 |= G2 [6]. Note that only assumption 1 is for
goals. In this section we will consider only monadic programs and goals satisfying
these assumptions.

The set of predicate symbols used in the set W of formulas will be denoted by
ΠW , and the set of functional symbols used in W will denoted by ΦW . For a monadic
program P and a variable-free monadic goal G, constraint(P,G) will be defined in

the following way: constraint (P,G) = P∗
d−1

∑
i=0

(
ΦP∪{G}

)i
, where d = l +2ΠP and l

is the maximum depth of the terms in G.
D e f i n i t i o n 3 . 1 . (Program Transformation). Let P be a monadic pro-

gram. For the program P we construct a program P′ as follows: for every clause S of
the form p(t)← p1(t1), . . . , pm(tm) ∈ P,m≥ 0, we add the clause

pT (t,s(z))← pT
1 (t1,z) , . . . , pT

m(tm,z)

to P′, where the variable z /∈Var (S) and the functional symbol s /∈ΦP.
As a result of this transformation, for each clause of program P a new clause is

defined, which has the same structure as the original one, but with the new predicate
symbols of arity 2. The second parameter of the atoms is used for determining levels
of the atoms. These parameters are added as constraints.

D e f i n i t i o n 3 . 2 . (Goal Transformation). For a monadic program P and
a variable-free goal G of the form ← p1 (τ1) , . . . , pk(τk), we define the goal G′ as
follows:

← pT
1

(
τ1,sh (0)

)
, . . . , pT

k (τk,sh (0)),

where h = constraint (P,G).
T h e o r e m 3 . 1 . Let P be a monadic program and G ∈ ∆(P). P′ is the

program obtained from P by program transformation, and G′ is the goal obtained
from G by goal transformation. Then P |= G, if and only if P′ |= G′.

To prove Theorem 3.1, we will introduce some notations and prove auxiliary
lemmas.

44 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2014, №1, p. 40–47.

Let W be a set of formulas. We will denote by UW the set of ground terms by
using functional symbols from ΦW . For W we define IW = {p(t)| p ∈ ΠW , t ∈UW}.
For an interpretation I ⊂ IW we define I [t] = {p| p(t) ∈ I} and ΨW (I) =
= {I [t]| t ∈UW}. It is easy to see that for any interpretation I ⊂ IW the following
holds: ΨW (I)≤ 2ΠW .

We denote by U (1) the set of ground terms, which do not use functional sym-
bols of arity > 1. Next we denote by B(1) the set of ground atoms, which do not use
functional symbols of arity > 1 and use only predicate symbols of arity 1.

L e m m a 3 . 1 . Let P be a monadic program, p(τ) ∈ B(1), terms t1, t2 ∈
∈ UP∪{p(τ)} and interpretations I,J ⊂ IP∪{p(τ)}. If: I [0] = J[0]; I [τ] = J[τ];
I [t1] = J[t2]; I [f (t1)] = J[f (t2)], for every functional symbol f ∈ΦP, than:

I |= P{x/t1}∪{¬p(τ)}, if and only if J |= P{x/t2}∪{¬p(τ)}.

P r o o f . For any atom q(τ1) used in formulas of P{x/t1}∪{¬p(τ)}, τ1 is 0
or τ or t1 or f (t1) for some functional symbol f ∈ ΦP. For the corresponding atom
q(τ2) used in formulas of P{x/t2}∪{¬p(τ)}, τ2 is 0 or τ or t2 or f (t2) accordingly.

Therefore, in view of the assumptions of this Lemma q(τ1) ∈ I, if and only if
q(τ2) ∈ J. �

For a term t0 ∈U (1) we define the set of terms st(t0) in the following way:
• st (t0) = {t0} , if t0 is a constant;
• st (t0) = st (t1)∪{ f (t)|t ∈ st (t1)}, if t0 = f (t1).

Note that all subterms of the term t0 are in st (t0).
L e m m a 3 . 2 . Let P be a monadic program and an atom p(τ) ∈ B(1). Then

P |= p(τ) , if and only if
⋃

depth(t)<d P{x/t} |=p(τ) for d = depth(τ)+ 2ΠP , where
t ∈UP∪{p(τ)}.

P r o o f . Suppose
⋃

depth(t)<d P
{

x/t
}
|=p(τ). It is straightforward that

P |= p(τ). Now, suppose P |= p(τ). By Proposition 2.1, it follows that W =
= P∪ {¬p(τ)} is unsatisfiable. To prove that

⋃
depth(t)<d P{x/t} |=p(τ) , we will

show that Wd =
⋃

depth(t)<d P
{

x/t
}
∪
{
¬p(τ)

}
is unsatisfiable (Proposition 2.1).

Assume in the contrary that Wd is satisfiable. If Wd is satisfiable then it has a finite
model I ⊂ IW . Given I, we define a model J⊂ IW for W as follows.

A term t0 ∈UW is called initial, if:

depth(t0)≤ depth(τ) or (∀t ∈ st (t0) ,depth(t)≥ depth(τ)
and t 6= t0⇒ J [t] 6= J [t0]).

We define J inductively by induction on k, the depth of terms. If k = 0, we take
J[0] = I[0]. Now, assume J[t] has been defined for all terms t ∈UW of depth smaller
than k. Take a term t0 = f (t1) ∈UW of depth k.

If t1 is initial, put J[t0] = I[t0]. If t1 is not initial, for t1 we can uniquely choose
(by some algorithm) an initial term t2 ∈ st(t1) such that depth(t2) ≥ depth(τ) and
J [t1] = J[t2]. We put J [t0] = J[f (t2)]. We show, that if term t∈UW is initial, then
depth(t) < d. From the definition of J, it can be shown by an easy induction, that
∀t1, t2∈UW , i f t2 is not initial and t2 is a subterm of t1, then t1 is not initial.

Khachatryan S. A. On Optimization of Monadic Logic Programs. 45

Immediately it follows that ∀t1, t2∈UW , if t1 is initial and t2 is a subterm of t1,
then t2 is initial. For any initial term t∈UW , from the above, it follows that:

∀t1, t2∈UW , if t1 and t2 are subterms of t such that depth(t1)≥ depth(τ),
depth(t2)≥ depth(τ) and t1 6= t2 ⇒ J [t1] 6= J [t2].

Therefore, we conclude, that if t is initial, then

depth(t)< depth(τ)+ΨW (J)≤ depth(τ)+2ΠW = depth(τ)+2ΠP = d.
Finally, we show that J is a model of W . As terms 0 and τ are initial, it follows that:

• J[0] = I[0];
• J[τ] = I[τ].

Define ground instance of W as follows: W{x/t}= P{x/t}∪{¬p(τ)}, t ∈UW . Take
the ground instance W{x/t0}. If t0 is initial, then by the definition of J it follows that:

• J[t0] = I[t0];
• J [f (t0)] = I[f (t0)] for any functional symbol f ∈ΦW .

As depth(t0) < d, using Lemma 3.1 we can conclude the validity of W{x/t0} in J
from the validity of W{x/t0} in I. If t0 is not initial, we take the initial term t1 ∈ st(t0),
which is used in definition of J[f (t0)], f ∈ ΦW . Consequently, J [t0] = J[t1]. Hence,
J [t0] = J [t1] = I[t1]. Moreover, by the definition of J we have J [f (t0)] = J [f (t1)] =
= I[f (t1)] for any functional symbol f ∈ΦW . As depth(t1)< d, using Lemma 3.1 we
can conclude the validity of W{x/t0} in J from the validity of W{x/t1} in I. Hence,
J is a model of W . Thus, W is satisfiable. This is a contradiction. �

Recall the mapping TP : 2B→ 2B (see, e.g. [4]), which is defined as follows:
TP (I)= {Aθ |θ is grounding substitution for A←B1, . . . , Bm ∈P and B1θ , . . . ,Bmθ ∈
∈ I, m≥ 0}. Define T k

P , k ≥ 0, as follows:

• T 0
P = /0;

• T k
P = TP

(
T k−1

P

)
,k ≥ 1.

The function TP has a least fixpoint, denoted by T f ix
P = sup

{
T k

P

∣∣k ≥ 0}.
L e m m a 3 . 3 . Let P be a monadic program. Then P |= p(τ), if and only if

T h
P |= p(τ), where τ ∈U (1) and h = constraint(P, p(τ)).

P r o o f . Suppose P |= p(τ). By Lemma 3.2, P0 =
⋃

depth(t)<d P{x/t} |= p(τ)

for d = depth(τ)+ 2ΠP , t ∈ UP∪{p(τ)}. T k
P0
⊂ T k

P , as each clause of P0 is a ground
instance of a clause of P, k ≥ 0. As P0 |= p(τ) and P0 is a variable-free program, it
follows that T c0

P0
|= p(τ), where c0 = P0 [7]. The number of ground terms in UP∪{p(τ)}

of depth i will be
(

ΦP∪{p(τ)}

)i
. Hence, the number of ground terms in UP∪{p(τ)} with

depth of < d will be
d−1

∑
i=0

(
φP∪{p(τ)}

)i
. Whence, c0 ≤ c∗

d−1

∑
i=0

(
ΦP∪{p(τ)}

)i
=

= constraint (P, p(τ)) = h, where c = P. Therefore, T h
P0
|= p(τ), as T c0

P0
⊂ T h

P0
. Thus,

T h
P |= p(τ), as T h

P0
⊂ T h

P . Now, to show the converse, suppose T h
P |= p(τ).

As T h
P ⊂ T f ix

P , it follows that T f ix
P |= p(τ). Hence, as T f ix

P coincides with the
least Herbrand model of P, it follows that P |= p(τ) [4]. �

46 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2014, №1, p. 40–47.

L e m m a 3 . 4 . Let P be a monadic program and P′ by the program obtained
from P by program transformation. Then P′ |= pT (τ,sk (0)), if and only if
T k

P′ |= pT
(
τ,sk (0)

)
, where τ ∈U (1), pT ∈ΠP′ ,k ≥ 1.

P r o o f .
• Suppose P′ |= pT (τ,sk (0)). For any k ≥ 1 and any pT (τ,τ0) ∈ T k

P′\T
k−1

P′ ,

from the structure of P′, it follows that depth(τ0)≥ k. Hence, as
depth

(
sk (0)

)
= k and P′ |= pT (τ,sk (0)), it follows that pT (τ,sk (0)) ∈ T k

P′ .
• Suppose T k

P′ |= pT
(
τ,sk (0)

)
. As T k

P′ ⊂ T f ix
P′ , it follows that

T f ix
P′ |= pT

(
τ,sk (0)

)
. Whence, as T f ix

P′ coincides with the least Herbrand
model of P′, it follows that P′ |= pT

(
τ,sk (0)

)
[4]. �

L e m m a 3 . 5 . Let P be a monadic program and P′ be the program
obtained from P by program transformation. Then T k

P |= p(τ), if and only if
T k

P′ |= pT
(
τ,sk (0)

)
, where τ ∈U (1), p ∈ΠP, k ≥ 0.

P r o o f . Let prove only one side of implication, the other side can be proven
similarly. We prove by induction. For k = 0, T k

P = /0 and the result obviously holds.
Thus consider k ≥ 1. Suppose T k

P |= p(τ). Then a grounding substitution θ exists
for a clause S of the form p(t)← p1(t1), . . . , pm(tm) ∈ P such that p(t)θ = p(τ) and
p1(t1)θ , . . . , pm(tm)θ ∈ T k−1

P . By induction it follows that for every i = 1, . . . ,m,
T k−1

P′ |= pT
i (ti,s

k−1(0))θ .
As corresponding clause S′ ∈ P′ is pT (t,s(z))← pT

1 (t1,z) , . . . , pT
m(tm,z),

and σ = θ ∪{z/sk−1(0)} is a grounding substitution for S′, it follows that
TP′(T

k−1
P′) |= pT (t,s(z))σ . Hence, T k

P′ |= pT
(
τ,sk (0)

)
. �

L e m m a 3 . 6 . Let P be a monadic program and P′ be the program obtained
from P by program transformation. Then P |= p(τ), if and only if P′ |= pT (τ,sh (0)),
where τ ∈U (1), p ∈ΠP and h = constraint(P, p(τ)).

P r o o f .
• Suppose P |= p(τ). By Lemma 3.3, T h

P |= p(τ). Consequently,
T h

P′ |= pT
(
τ,sh (0)

)
(Lemma 3.5). Whence, by Lemma 3.4, P′ |= pT (τ,sh (0)).

• Suppose P′ |= pT (τ,sh (0)). By Lemma 3.4, T h
P′ |= pT

(
τ,sh (0)

)
. Then the

Lemma 3.5 will imply T h
P |= p(τ). Hence, by Lemma 3.3, P |= p(τ). �

Proof of the Theorem 3.1. Immediate from Lemma 3.6. �
T h e o r e m 3 . 2 .(Termination). Let P be a monadic program and G∈∆(P).

Let also P′ be the program obtained from P by program transformation, and G′ be
the goal obtained from G by goal transformation. Then an SLD-tree of P′ and G′ is
finite.

To prove Theorem 3.2, we will use the following notions and results.
D e f i n i t i o n 3 . 1 . (Level Mapping). A level mapping is a function ||:B→

→ N from the Herbrand base to the set of natural numbers N. For an atom A ∈ B, |A|
denotes the level of A.

D e f i n i t i o n 3 . 2 . (Recurrency). A clause A← B1, . . . ,Bm is recurrent
(wrt ||) if for every grounding substitution θ , |Aθ | > |Biθ | for all i = 1, . . . ,m. A
program P is recurrent (wrt ||) if every clause in P is recurrent (wrt ||).

Khachatryan S. A. On Optimization of Monadic Logic Programs. 47

For a variable-free goal G of the form ← C1, . . . ,Ck, |G| denotes the (finite)
multiset consisting of the natural numbers |C1| , . . . , |Ck|. Let N be the set of natural
numbers. A multiset ordering over N is an ordering of finite multisets of natural
numbers such that a multiset X is smaller than a multiset Y, if X can be obtained from
Y by replacing one or more elements in Y by any (finite) number of natural numbers,
each of which is smaller than one of the replaced elements.

The next lemma follows from [3].
L e m m a 3 . 7 . Let P be a logic program which is recurrent with respect to

a level mapping || and G be a variable-free goal. Then, if Q is an SLD-resolvent of G
and a clause from P, then the multiset |Q| is smaller than |G| in the multiset ordering.

C o r o l l a r y 3 . 1 . Every SLD-derivation of a recurrent program and a
variable-free goal is finite.

P r o o f. Immediate, as the multiset ordering over N is well-founded [8,9]. �
Proof of the Theorem 3.2. Since SLD-trees are finitely branching, by Kenig’s

Lemma, “SLD-tree of P′ and G′ is finite” is equivalent to stating that every SLD-
derivation for P′ and G′ is finite. As G′ is variable-free, it follows from Corollary
3.1, that for proving the finiteness of any SLD-derivation of P′ and G′, it is enough to
define level mapping function || and to show that P′ is recurrent wrt that function. For
an atom pT (τ1,τ2) ∈ B, let us define the level mapping function || as

∣∣pT (τ1,τ2)
∣∣=

= depth(τ2).
Let us prove the recurrency of each clause S′ ∈ P′ wrt level mapping defined

above. S′ has a form pT (t,s(z))← pT
1 (t1,z) , . . . pT

m(tm,z). Let i ∈ {1, . . . ,m} and θ

be a grounding substitution for S′. Then
|pT (t,s(z))θ |= depth(s(z)θ) = depth(zθ)+1 > depth(zθ) =

∣∣pT
i (ti,z)θ

∣∣ .
It follows that all clauses of P′ are recurrent and, hence, P′ is recurrent. �

Received 24.12.2013

R E F E R E N C E S

1. Gurevich Yu.Sh. The Decision Problem for the Logic of Predicates and of Operations.
// Algebra and Logic, 1969, v. 8, № 3, p. 160–174.

2. Cavedon L. Acyclic Logic Programs and the Completeness of SLDNF-Resolution. //
Theoretical Comput., 1991, v. 86, p. 81–92.

3. Bezem M.A. Strong Termination of Logic Programs. // Journal of Logic Programming,
1993, v. 15, № (1 & 2), p. 79–97.

4. Lloyd J.W. Foundations of Logic Programming. Springer-Verlag, 1984.
5. Nilsson U., Maluszski J. Logic, Programming and PROLOG (2-nd ed.). John Wiley &

Sons Inc., 1995.
6. Matos A.B. Monadic Logic Programs and Functional Complexity. // Theoretical Com-

puter Science, 1997, v. 176, p. 175–204.
7. Khachatryan S. On the Optimization of Variable-Free Logic Programs. In Proceedings

of CSIT, 2011, p. 50-51.
8. Dershowitz N. Termination of Rewriting. // J. Symbolic Comput., 1987, v. 3, p. 69–116.
9. Vereshchagin N., Shen A. Basic Set Theory. AMS, 2002.

