ON FOURIER COEFFICIENTS WITH RESPECT TO THE WALSH DOUBLE SYSTEM

A. B. MINASYAN *
Chair of Higher Mathematics (Department of Physics) YSU, Armenia

In the present paper we will consider the behavior of Fourier coefficients with respect to the Walsh double system after modification of functions. We prove that for any function $f(x, y) \in L^{p}[0,1]^{2}$ one can find a function $g \in L^{p}[0,1]^{2}$ coinciding with $f(x, y)$ except a set of small measure such that the non-zero coefficients of $g(x, y)$ are monotonically decreasing over all rays in absolute value.

MSC2010: 42A65, 42A20.
Keywords: Walsh double system, Fourier coefficients.

1. Introduction. We will consider the behavior of Fourier coefficients with respect to the Walsh double system after modification of functions. Note that the well-known classical theorems of N.N. Lusin [1] and D.E. Men'shov [2] are about the "correction of functions".

Further interesting results in this direction were obtained by many mathematicians, and bellow we present some results having a direct relation to the present work [3-5].

Let $\Phi=\left\{\varphi_{k}(x)\right\}$ be the Walsh system and let $f(x, y) \in L^{p}, p \geq 1$. We denote by $c_{k, n}(f)$ the Fourier coefficients of $f(x, y)$ with respect to the Walsh double system, i.e.

$$
c_{k, n}(f)=\int_{0}^{1} \int_{0}^{1} f(t, \tau) \varphi_{k}(t) \varphi_{n}(\tau) d t d \tau, \text { where } k, n=0,1,2, \ldots
$$

The spectrum of $f(x, y)$ (denoted by $\operatorname{spec}(f))$ is the support of $c_{k, n}(f)$, i.e. the index set, where $c_{k, n}(f)$ is non-zero: $\operatorname{spec}(f)=\left\{(k, n), c_{k, n}(f) \neq 0\right\}$.

We will say that the sequence $\left\{b_{k, n}\right\}\left(b_{k, n} \geq 0\right)$ is monotonically decreasing over all rays, if $b_{k_{1}, n_{1}} \geq b_{k_{2}, n_{2}}$, when $k_{2}>k_{1}, n_{2} \geq n_{1}$ and $b_{k_{j}, n_{j}} \neq 0, j=1,2$.

In [4] was proved that for any $0<\varepsilon<1, p \geq 1$ and each function $f \in L^{p}[0,1]$ one can find a function $g \in L^{p}[0,1]$, mes $\{x \in[0,1] ; g \neq f\}<\varepsilon$ such that the

[^0]sequence $\left\{\left|c_{k}(g)\right|, k \in \operatorname{spec}(g)\right\}$ is monotonically decreasing, where $c_{k}(g)$ are the Fourier-Walsh coefficients of g, i.e. $c_{k}(g)=\int_{0}^{1} g(t) \varphi_{k}(t) d t, k=0$.

In the present work we prove only the following theorem.
Theorem. For any $0<\varepsilon<1, p \geq 1$ and each function $f(x, y) \in L^{p}[0,1]^{2}$ one can find a function $g \in L^{p}[0,1]^{2}$, mes $\left\{(x, y) \in[0,1]^{2} ; g \neq f\right\}<\varepsilon$ such that the sequence $\left\{\left|c_{k, n}(g)\right|,(k, n) \in \operatorname{spec}(g)\right\}$ is monotonically decreasing over all rays.
2. Basic Lemmas. The Walsh system, an extension of the Rademacher system, may be obtained in the following manner. Let r be the 1-periodic function, defined on $[0,1)$ by $r(x)=\chi_{[0,1 / 2)}-\chi_{[1 / 2,1)}$. The Rademacher system, $R=\left\{r_{n}(x)\right\}_{n=0}^{\infty}$ is defined as follows: $r_{n}(x)=r\left(2^{n} x\right)$ for all real numbers x and $n=0,1, \ldots$, and, in the ordering employed by Paley [6], the $n^{\text {th }}$ element of the Walsh system $\left\{\varphi_{n}(x)\right\}$ is given by $\varphi_{n}(x)=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x)$, where $\sum_{k=0}^{\infty} n_{k} 2^{k}$ is the unique binary expansion of n, with each n_{k} either 0 or 1 .

Lemma 1. Let the numbers $\gamma \neq 0, \delta \in(0,1), \varepsilon \in(0,1), N>1$ and $\Delta=\Delta_{1} \times \Delta_{2} \subset[0,1]^{2} \quad$ be given. Then there exists a set $E \subset \Delta, \operatorname{mes}(E)>(1-\delta)|\Delta|$ and a double polynomial in the Walsh system of the form

$$
Q(x, y)=\sum_{k, n=N}^{M} c_{k, n} \varphi_{k}(x) \varphi_{n}(y)
$$

satisfying the following conditions:

1. $\left|c_{k, n}\right|<\varepsilon$ for all $k, n \in[N, M]$;
2. $Q(x, y)=\gamma \chi_{\Delta}(x, y)$ for all $(x, y) \in E$;
3. $\|Q\|_{p}<4 \delta^{-\frac{2}{q}}\left\|\gamma \chi_{\Delta}(x, y)\right\|_{p}\left(\frac{1}{p}+\frac{1}{q}=1\right)$;
4. the sequence $\left\{\left|c_{k, n}\right|\right\}$ is monotonically decreasing over all rays.

By virtue of the Lemma 3 of [4], one can find measurable sets $E_{j} \subset \Delta_{j}, j=1,2$, and polynomials

$$
Q_{1}(x)=\sum_{k=N}^{M} a_{k} \varphi_{k}(x), Q_{2}(y)=\sum_{n=N}^{M} b_{n} \varphi_{n}(y),
$$

where $\left|a_{k}\right|<\varepsilon, \quad\left|b_{n}\right|<1$ for all $k, n \in[N, M]$ and non-zero coefficients in $\left\{\left|a_{k}\right|\right\}_{k=N}^{M}$ and in $\left\{\left|b_{n}\right|\right\}_{n=N}^{M}$ are in decreasing order, $Q_{1}(x)=\gamma \chi_{\Delta_{1}}(x), \forall x \in E_{1}$, $\operatorname{mes}\left(E_{1}\right)>\left(1-\frac{\delta}{2}\right)\left|\Delta_{1}\right|, Q_{2}(y)=\chi_{\Delta_{2}}(y), \quad \forall x \in E_{2}, \operatorname{mes}\left(E_{2}\right)>\left(1-\frac{\delta}{2}\right)\left|\Delta_{2}\right|$,

$$
\left\|Q_{1}\right\|_{p}<2 \delta^{-\frac{1}{q}}\left\|\gamma \chi_{\Delta_{1}}(x)\right\|_{p},\left\|Q_{2}\right\|_{p}<2 \delta^{-\frac{1}{q}}\left\|\chi_{\Delta_{2}}(y)\right\|_{p}
$$

We put

$$
E=E_{1} \times E_{2}, Q(x, y)=Q_{1}(x) Q_{2}(y)=\sum_{k, n=N}^{M} c_{k, n} \varphi_{k}(x) \varphi_{n}(y), c_{k, n}=a_{k} b_{n} .
$$

It is easy to notice that E and $Q(x, y)$ will satisfy to the conditions of Lemma 1 .
Lemma 2. Let the numbers $p \geq 1, m_{0}>1$, positive ε and δ and Walsh double polynomial $f(x, y)$ be given. Then one can find a set $E \subset[0,1]^{2}, \operatorname{mes}(E)>$ $>1-\delta$ and a double polynomial in the Walsh double system of the form

$$
Q(x, y)=\sum_{k, n=m_{0}}^{N} c_{k, n} \varphi_{k}(x) \varphi_{n}(y)
$$

satisfying the following conditions:

1) $\left|c_{k, n}\right|<\varepsilon$ for all $k, n \in\left[m_{0}, N\right]$,
2) $Q(x, y)=f(x, y)$ for all $(x, y) \in E$,
3) $\|Q\|_{p}<4 \delta^{-\frac{2}{q}}\|f\|_{p}\left(\frac{1}{p}+\frac{1}{q}=1\right)$,
4) the sequence $\left\{\left|c_{k, n}\right|\right\}$ is monotonically decreasing over all rays.

Proof. Let

$$
f(x, y)=\sum_{k=0}^{M} b_{k, n} \varphi_{k}(x) \varphi_{n}(y)=\sum_{v=1}^{v_{0}} \gamma_{v} \chi_{\Delta_{v}}(x, y), \quad \sum_{v=1}^{v_{0}}\left|\Delta_{v}\right|=1,
$$

where $\Delta_{v}=\Delta_{v}^{(1)} \times \Delta_{v}^{(2)}$ and $\Delta_{v}^{(j)}, v=1, \ldots, v_{0}$, are dyadic intervals .
Applying repeatedly Lemma 1 , one can find a sequence of measurable sets $\left\{E_{v}\right\}_{v=1}^{v_{0}}, E_{v} \subset \Delta_{v}, \operatorname{mes}\left(E_{v}\right)>(1-\delta)\left|\Delta_{v}\right| \quad$ and polynomials

$$
Q_{v}(x, y)=\sum_{k, n=m_{v-1}}^{m_{v}-1} c_{k, n} \varphi_{k}(x) \varphi_{n}(y), \quad v=1, \ldots, v_{0}
$$

which satisfy the following conditions:
the sequence $\left\{\left|c_{k, n}\right|\right\}_{k, n=m_{v-1}}^{m_{v}-1}$ is monotonically decreasing over all rays and $\max _{k, s \in\left[m_{n-1} ; m_{n}\right)}\left|c_{k, s}\right|<\min _{k, s \in\left(m_{n} ; m_{n+1}\right)}\left|c_{k, s}\right|<2^{-n} \varepsilon$

$$
\begin{gathered}
Q_{v}= \begin{cases}\gamma_{V}: & \text { if } x \in E_{V}, \\
0: & \text { if } x \notin \Delta_{v},\end{cases} \\
\left\|Q_{v}\right\|_{p}=\left(\int_{0}^{1} \int_{0}^{1}\left|Q_{v}(x, y)\right|^{p} d x d y\right)^{1 / p}<4 \delta^{-\frac{2}{4}}\left|\gamma_{v}\right|\left|\Delta_{v}\right|^{1 / p} .
\end{gathered}
$$

We define

$$
E=\bigcup_{v=1}^{v_{0}} E_{V}, Q(x, y)=\sum_{v=1}^{v_{0}} Q_{v}(x, y)=\sum_{k, n=m_{0}}^{N} c_{k, n} \varphi_{k}(x) \varphi_{n}(y), N=m_{v_{0}}-1 .
$$

It is not hard to notice that the sequence $\left\{\left|c_{k, n}\right|\right\}$ monotonically decreases over all rays and

$$
Q(x, y)=f(x, y), \text { for }(x, y) \in E, \operatorname{mes}(E)>1-\delta,\|Q\|_{p}<4 \delta^{-\frac{2}{q}}\|f\|_{p}
$$

3. Proof of Theorem.

Let $p \geq 1, f(x, y)$ be an arbitrary element of $L^{p}[0,1]^{2}$, and let $\varepsilon \in(0,1)$. It is not hard to choose a sequence $\left\{f_{n}(x, y)\right\}_{n=1}^{\infty}$ of polynomials in the Walsh double systems such that

$$
\begin{gathered}
\lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} f_{n}(x, y)-f(x, y)\right\|_{p}=0,\left\|f_{n}(x, y)\right\|_{p} \leq \varepsilon^{\frac{2}{q}} 2^{-4(n+1)}, \\
n \geq 2\left(\frac{1}{p}+\frac{1}{q}=1\right) .
\end{gathered}
$$

Applying repeatedly Lemma 2, we obtain a sequence of sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ and polynomials in the Walsh double systems $\left\{\varphi_{k}(x) \varphi_{s}(y)\right\}$
$Q_{n}(x, y)=\sum_{k, s=m_{n-1}}^{m_{n}-1} a_{k, s} \varphi_{k}(x) \varphi_{s}(y), n \geq 1, m_{n} \quad \nearrow$, which for all $n \geq 1$ satisfy the following conditions:

$$
Q_{n}(x, y)=f_{n}(x, y), \text { for }(x, y) \in E_{n},\left|E_{n}\right|>1-\varepsilon 2^{-n},\left\|Q_{n}\right\|_{p} \leq 4 \varepsilon^{-\frac{2}{q}} 2^{\frac{2}{q}}\left\|f_{n}\right\|_{p}
$$

the sequences $\left\{\left|a_{k, s}\right|\right\}_{k, s=m_{n}}^{m_{n+1}}$ and $\left\{\left|a_{k, s}\right|\right\}_{k, s=m_{n-1}}^{m_{n}}$ are monotonically decreasing over all rays and $\max _{k, s \in\left[m_{n-1} ; m_{n}\right)}\left|a_{k, s}\right|<\min _{k, s \in\left[m_{n} ; m_{n+1}\right)}\left|a_{k, s}\right|<2^{-n}$.

We put

$$
g(x, y)=\sum_{n=1}^{\infty} Q_{n}(x, y)=\sum_{k, s=0}^{\infty} a_{k, s} \varphi_{k}(x) \varphi_{s}(y) .
$$

Obviously, $g(x, y) \in L^{p}[0,1]^{2}$,

$$
g(x, y)=f(x, y), \text { for }(x, y) \in \bigcap_{n=1}^{\infty} E_{n}, \operatorname{mes}\left(\bigcap_{n=1}^{\infty} E_{n}\right)>1-\varepsilon .
$$

It is not hard to see that $a_{k, n}=c_{k, n}(g)=\int_{0}^{1} \int_{0}^{1} g(t, \tau) \varphi_{k}(t) \varphi_{n}(\tau) d t d \tau$, $k, n=0,1,2, \ldots$ and $\left\{\left|c_{k, n}(g)\right|,(k, n) \in \operatorname{spec}(g)\right\}$ decreases over all rays.

Received 20.02.2014

REFERENCES

1. Lusin N.N. Integral and Trigonometric Series. M.: Gostekhizdat, 1951 (in Russian).
2. Men'shov D.E. Sur la Representation des Fonctions Measurables des Series Trigonometriques. // Mat. Sbornik, 1941, v. 9, p. 667-693.
3. Grigoryan M.G. Uniform Convergence of the Greedy Algorithm with Respect to the Walsh System. // Studia Math., 2001, v. 198, № 2, p.197-206.
4. Grigoryan M.G. Modification of Functions, Fourier Coefficients and Nonlinear Approximation. // Sbornik: Math., 2012, v. 203, № 3, p. 351-379.
5. Kobelyan A.Kh, Some Property of General Haar System. // Proceedings of the YSU, Physial and Mathematical Sci., 2013, № 3, p. 23-29.
6. Paley R.E.A.C. A Remarkable Set of Orthogonal Functions London Math. Soc., 1932, v. 34, p. 241-279.

[^0]: * E-mail: artavazdminasyan@gmail.com.

