Physical and Mathematical Sciences

2014, № 1, p. 16–18

Mathematics

OPERATOR ANALOGUE OF BERNSTEIN THEOREM

H. A. KAMALYAN *

Chair of Differential Equations YSU, Armenia

In this article obtained operator analogue of well-known S. Bernstein Theorem about approximation on the real axis of a bounded and uniformly continuous function by entire functions of Bernstein space.

MSC2010: 46J15 46J10.

Keywords: Banach algebra, holomorphic by Lorch mapping.

Let \mathcal{A} is involutive and commutative Banach algebra with unit. We denote by $M_{\mathcal{A}}$ a maximal ideal space of \mathcal{A} and by $Sym(\mathcal{A}^*)$ the set of continuous and selfadjoint functional space. We assume that \mathcal{A} disjoint elements of \mathcal{A} (i.e. involution is continuous and symmetric in sense that $\varphi(x^*) = \widehat{\varphi(x)}$). It is well-known, if \mathcal{K} is a set of all positive functional spaces on \mathcal{A} with $\Phi(1) \leq 1$, and \mathcal{M} is a set of all positive regular Borel measures μ on $M_{\mathcal{A}}$ with $\mu(M_{\mathcal{A}})$, then the formula of Bochner $\Phi(x) = \int_{M_{\mathcal{A}}} \widehat{x} d\mu$ establishes one-to-one correspondence between \mathcal{K} and \mathcal{M} , which carries extreme points to extreme points [1]. Consequently, the multiplicative linear functional on \mathcal{A} are precisely the extreme points of \mathcal{K} set. Recall that commutative set is called normal, if from condition $S \subset \mathcal{A}$ follows $x^* \in S$. Further assumed that commutative algebra \mathcal{A} is normal subalgebra of the algebra of all bounded linear operators BL(H) acting in Hilbert space H.

Let $\Omega_A \subset A$ is domain, and $f : \Omega_A \to A$ is holomorphic by Lorch mapping [2, 3]. If $\Omega_A = A$, then mapping *f* called an entire by Lorch mapping.

Let $f : \mathcal{A} \to \mathcal{A}$ is a entire by Lorch mapping, than for every $\varphi \in M_{\mathcal{A}}$ exist a unique entire function $g_{\varphi} : \mathbb{C} \to \mathbb{C}$, which diagram $\varphi \circ f = g_{\varphi} \circ \varphi$ is commutative [4] entire by Lorch mapping f with a form

$$f(\boldsymbol{\omega}) = \sum_{i=0}^{\infty} \frac{c_k w^k}{k!},$$

^{*} E-mail: h.qamalyan@gmail.com

where $\overline{\lim_{k\to\infty}} \sqrt[k]{\|c_k\|} = \widehat{\sigma} < \infty$ will be called a mapping of exponent type not exceeding $\widehat{\sigma}$. Notice, if $c_k = c^k$, where *c* is any fixed element of algebra \mathcal{A} , then $\widehat{\sigma} = \rho(c)$, where $\rho(c)$ is spectral radius of an element *c*.

Denote by $E_{\hat{\sigma}}(\mathcal{A})$ the space of all entire by Lorch mapping of an exponential type not exceeding $\hat{\sigma}$.

Denote by $\mathcal{H}(\mathcal{A})$ the space of self-adjoint (in this case it is the same as Hermite) operators in algebra. Let $C_b(\mathcal{H}(\mathcal{A}),\mathcal{A})$ is a set of all bounded functions, and $C_{b,u}(\mathcal{H}(\mathcal{A}),\mathcal{A})$ is a set of all bounded uniformly continuous functions \mathcal{A} -valued mappings from $\mathcal{H}(\mathcal{A})$ to \mathcal{A} . It is easy to see that sup-norm

$$\|g\|_{\infty} = \sup_{h \in \mathcal{H}(\mathcal{A})} \|g\|_{\mathcal{A}} < \infty$$

make $C_b(\mathcal{H}(\mathcal{A}),\mathcal{A})$ in a Banach algebra, and $C_{b,u}(\mathcal{H}(\mathcal{A}),\mathcal{A})$ in his subalgebra. The space of Bernstein $B_{\widehat{\sigma}}(\mathcal{A})$ considered as a set of entire by Lorch mapping $f \in E_{\widehat{\sigma}}(\mathcal{A})$, satisfying condition

$$||f||_{\infty} = \sup_{h \in \mathcal{H}(\mathcal{A})} ||f(h)||_{\mathcal{A}},$$

is a Banach space with norm $\|.\|_{\infty}$.

Let $f \in B_{\widehat{\sigma}}(\mathcal{A})$ and $\varphi \in M_{\mathcal{A}}$, then

$$f_{\varphi}(z) = \varphi(f(\omega)) = f(\varphi(\omega)) = f(\varphi(\omega)) \in B_{\widehat{\sigma}}(\mathbb{C})$$

because of

$$|f_{\varphi}(x)| = |\varphi(f(h))| \le ||f(h)|| < \infty,$$

we have

$$|f_{\varphi}(z)| = |\varphi(f(\omega))| = \sum_{i=0}^{\infty} \frac{\varphi(c_k) z^k}{k!}$$

when

$$\overline{\lim_{k \to \infty} \sqrt[k]{|\varphi(c_k)|}} = \overline{\lim_{k \to \infty} \sqrt[k]{|\widehat{c}_k(\varphi)|}} \le \overline{\lim_{k \to \infty} \sqrt[k]{|\widehat{c}_k\|_{\infty}}} = \overline{\lim_{k \to \infty} \sqrt[k]{|\widehat{c}_k\|}} = \widehat{\sigma}$$

Applying classical Bernstein inequality [5,6]

$$|f'_{\varphi}(x)| \leq \widehat{\sigma} \sup_{\mathbb{R}} |f_{\varphi}(x)|,$$

and by a definition of a derivative by Lorch the next inequality holds:

$$|\varphi'(f(h))| \leq \widehat{\sigma} \sup_{h \in \mathcal{H}(\mathcal{A})} |\varphi(f(h))| = \widehat{\sigma} \sup_{h \in \mathcal{H}(\mathcal{A})} |\widehat{f(h)}(\varphi)| \leq \widehat{\sigma} \sup_{h \in \mathcal{H}(\mathcal{A})} ||f(h)||.$$

Using Banach-Steinhaus Theorem [1], we get

$$||f'(h)|| \le \alpha \widehat{\sigma} \sup_{h \in \mathcal{H}(\mathcal{A})} ||f(h)||,$$

where α is a positive number depend on M_A .

The following theorem is true:

Theorem. If $F \in C_{b,u}(\mathcal{H}(\mathcal{A}),\mathcal{A})$, then exist a sequence of entire by Lorch mappings $f_k \in B_{\widehat{\sigma_k}}(\mathcal{A})$ such that $||F - f_k||_{\infty} \longrightarrow 0$ when $k \to \infty$.

Proof. From classic Bernstein Theorem follows, that for every fixed $F \in C_{b,u}(\mathcal{H}(\mathcal{A}),\mathcal{A})$ and for every fixed $\varphi \in M_{\mathcal{A}}, F_{\varphi} \in C_{b,u,\varphi}(\mathbb{R},\mathbb{C})$ exists entire functions $f_{\varphi,k}$ from spaces $B_{\sigma_{k,\varphi}}$ correspondingly, such that

$$\sup_{\mathbb{R}} |F_{\varphi}(x) - f_{\varphi,k}(x)| \to 0 \text{ when } k \to \infty.$$

On the other hand, it means that exists a mappings $f_k \in B_{\widehat{\sigma}_k}(\mathcal{A})$, where $f_{\varphi,k} = \varphi(f_k)$. By the Banach–Steinhaus Theorem,

$$\sup_{h\in\mathcal{H}(\mathcal{A})} |\varphi((F(h) - f_k(h))| \longrightarrow 0 \text{ when } k \to \infty.$$

From which follows that

for every k. Then from (1)

$$\|\widehat{F-f}\|_{\infty} \to 0 \text{ when } k \to \infty.$$
 (1)

But A is a normal subalgebra in BL(H) and Gelfand's transform is an isometric isomorphism. This means that

$$\|\widehat{F} - \widehat{f}_k\| = \|F - f_k\|$$

follows
 $\|F - f_k\|_{\infty} \to 0$ when $k \to \infty$.

Received 20.02.2014

REFERENCES

- 1. Rudin W. Functional Analaysis. New York–Sydney–Toronto, 1973.
- 2. Lorch E.R. The Theory of Analytic Functions in Normed Abelian Vector Rings. // Trans. Amer. Math. Soc., 1943, v. 54, p. 414–425.
- Hille E., Phillips R.S. Functional Analysis and Semi-Groups. // Trans. Amer. Math. Soc. Colloq. Publ., 1957, v. 31.
- 4. Clickeld W. The Rieamann Sphere of a Commutative Banach Algebra. // Trans. Amer. Math. Soc., 1968, v. 134, p. 1–28.
- 5. Akhiezer N. Lectures on Approximation Theory. M.: Nauka, 1965 (in Russian).
- 6. **Timan A.F.** Theory of Approximation Functions of a Real Variable. M.: Physical and Mathematical Literature, 1960 (in Russian).