ՏԱՅԱՍՏԱՆԻ ՏԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱՁԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Хилииции ի քիմիական հանդես Химический журнал Армении 67, №2-3, 2014 Chemical Journal of Armenia

УДК 541.124

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССОВ ПОСЛЕДОВАТЕЛЬНОГО ПРИСОЕДИНЕНИЯ АТОМОВ *Н* И *О* К ЭТИЛЕНУ

А. Г. ДАВТЯН

Институт химической физики им. А.Б. Налбандяна Республики Армения Армения, 0014, Ереван, ул. П. Севака, 5/2 E-mail: aramdav@ichph.sci.am

Поступило 18 III 2014

В рамках теории функционала плотности (DFT) и методов *ab initio* исследованы энергетические пути последовательного присоединения атомов водорода и кислорода к этилену. Сечения поверхностей потенциальных энергий (ППЭ) первоначально изучены с применением гибридного метода Beck3-Lee-Yang-Parr (B3LYP) в базисе 6-31G(d). Основные экстремумы ППЭ исследуемых систем пересчитаны с помощью *ab initio* метода CBS-QB3. Найдены переходные состояния реакций и продукты присоединения, ведущие к образованию C₂H₅ и C₂H₅O аддуктов, которые играют ключевую роль в процессе термического окисления этилена и важны для понимания механизма окисления олефиновых углеводородов в целом.

Рис. 4, табл. 1, библ. ссылок 25.

Изучение процессов окисления ненасыщенных углеводородов имеет большое практическое значение с точки зрения получения ценных кислородсодержащих соединений, таких, как оксиды олефинов, альдегиды, и спирты. Известно, что процессы цепного газофазного окисления углеводородов протекают с участием атомов и радикалов [1]. Было показано также, что окисление олефинового углеводорода этилена протекает с участием тех же алкилпероксидных радикалов, что и окисление парафинового углеводорода этана [2-4]. В основе предложенного механизма лежит предположение о том, что образующиеся в условиях низкотемпературного окисления атомы и радикалы легче присоединяются к этилену, чем отрывают атом водорода. В частности, атом водорода, образующийся в цепи превращений, может присоединяться к этилену, образуя этильный радикал, который в кислородной среде переходит в этилпероксидный радикал C₂H₅O₂ [4]. При этом в результате взаимо-188

действия пероксидных радикалов с двойной связью этилена происходит образование оксида этилена и выделяется алкоксильный радикал [5, 6], который, в свою очередь, может участвовать в различных превращениях, в частности, взаимодействовать с этиленом.

В работе [6] нами исследовалась поверхность потенциальной энергии взаимодействия метоксильных радикалов с этиленом, были рассчитаны различные каналы реакций и предложен механизм образования кислородсодержащих соединений. Представляется чрезвычайно важным также получение расчётным путем детальной информации о дальнейших реакциях атомов водорода и кислорода, образующихся в процессе окисления этилена. Более того, последовательное присоединение атомов Н и О к этилену включает двойную химическую активацию, а образующийся возбужденный аддукт C₂H₅O способен преодолеть более высокие потенциальные барьеры с образованием различных продуктов за счет избытка внутренней энергии. Вопросы, связанные с химической активацией, обсуждались в работе [7].

Реакции атомов Н и О, простейших систем с открытой электронной оболочкой, в среде окисления этилена исследованы с помощью различных теорий. Теоретические исследования взаимодействия атомов водорода с этиленом, проведенные авторами [8-15], основаны на различных приближениях и не дают возможности провести сравнение энергетических характеристик процессов и геометрических параметров широкого спектра систем. Это обусловлено тем, что расчёты на основе различных теорий, как правило, дают расхождения в оценке энергетических параметров реакции и локализации экстремумов ППЭ. Поэтому для проведения адекватного сопоставительного анализа практически важных систем необходимы систематические исследования механизмов гомологических реакций.

Исходя из этого в представленной работе была поставлена задача исследовать ППЭ систем H+C₂H₄ и O+C₂H₅ современными квантовохимическими методами с целью детального анализа путей взаимодействия атомов с этиленом и дальнейшего превращения аддуктов.

Методология расчета

Различные сечения ППЭ реагирующих систем первоначально были исследованы с помощью теории функционала плотности (DFT) с использованием гибридного метода Beck3-Lee-Yang-Parr (B3LYP) в базисе 6-31G(d) [16], успешно применяемого в расчетах систем с открытыми электронными оболочками. Расчеты проводились с помощью программного комплекса Gaussian 98 [17]. Геометрические параметры, найденные в результате этих исследований, были использованы для определения энергетических параметров экстремумов в рамках композитного метода CBS-QB3 [18]. Многоуровневый метод CBS-QB3 позволяет полу-

чать более точные результаты, в частности, для реакций с переходом Н атомов, в отличие от относительно простых методов DFT, иногда приводящих к артефактному отрицательному значению для величин барьеров реакций с переносом атомов Н [14]. Расчетная схема CBS-QB3 включает определение геометрий и частот колебаний экстремумов на уровне B3LYP/CBSB7. Используемый в [18] базис CBSB7 эквивалентен базисному набору попловского типа 6–311G(2d,d,p), который включает 2dфункции на элементах второго периода периодической таблицы, d-поляризационные функции на элементах первого периода и дополнительные р-поляризационные функции на атомах Н. Именно наличие последних р-поляризационных функций и играет решающую роль в адекватном определении структуры и энергии переходных состояний (ПС) реакций с переносом атомов Н, как это отмечено в работе Питерсона с сотр. [18]. Проведена также экстраполяция базиса к пределу полного базисного набора (CBS). Дополнительные коррекции к полной энергии достигнуты с помощью поправок к спин-контаминации систем с открытой оболочкой, а также эмпирических членов. В результате метод CBS-QB3 в настоящее время является одним из наиболее достоверных методов исследования термохимии и кинетики сложных радикальных реакций [19, 20].

Основываясь на том, что выбранный нами подход приводит к достаточно достоверному описанию энергетических параметров изучаемых реакций, основное внимание уделялось нахождению стабильных и метастабильных промежуточных состояний радикальных продуктов присоединения и переходных состояний, т. е. локализации экстремумов на путях протекания реакций. Методами оптимизации геометрий, описанными в [21], определены геометрические параметры локальных и глобальных минимумов и ПС, а также рассчитывались значения энергетических параметров реагентов в пред- и постреакционных координированных состояниях (Ван-дер-ваальсовых комплексах). С использованием оптимизированных геометрий продуктов и реагентов проводились поиски переходных состояний посредством методов Берни и процедуры STQN -QST2 [21, 22], заложенных в программный код Gaussian 98.

Все расчёты проводились для T = 298.15 *К* и P = 1*атм*. Основные термохимические параметры, полученные в результате исследований по методам B3LYP в базисе 6-31G(d) и CBS-QB3, приведены в таблице.

Результаты и их обсуждение

Система H+C₂H₄. Предварительные расчеты в рамках гибридной теории функционала плотности B3LYP/6-31G(d) показали (рис. 1), что для реакции

$$H + C_2 H_4 \rightarrow C_2 H_5 \tag{1}$$

Таблица

Система	H (298K) ¹ , <i>a.e.</i>		G (298K) ² , <i>a.e.</i>		ΔH^3 , ккал/моль		$\Delta { m G}^4$, ккал/моль		v ₁ ⁵ , см ⁻¹	
	B3LYP/	CBS-QB3	B3LYP/	CBS-QB3	B3LYP/	CBS-	B3LYP/	CBS-QB3	B3LYP/	CBS-QB3
	6-31G(d)		6-31G(d)		6-31G(d)	QB3	6-31G(d)		6-31G(d)	
Н	-0.497912	-0.497457	-0.510927	-0.510472						
0	-75.058263	-74.985269	-75.075575	-75.002582						
C_2H_4	-78.532245	-78.412630	-78.557106	-78.437494						
H+C ₂ H ₄	-79.030157	-78.910087	-79.068033	-78.947966	0.0	0.0	0.0	0.0		
$(H+C_2H_4)min$	-79.030025	-78.910021	-79.062522	-78.943959	0.1	0.0	-3.6	2.5		
TS(min C_2H_5)	-79.030837	-78.909095	-79.060143	-78.938166	-0.4	0.62	4.9	6.2	-203.88	-309.2
C_2H_5	-79.093313	-78.966613	-79.122348	-78.995774	-39.6	-35.5	-34.1	-30.0		
$O+C_2H_5$	-154.151576	-153.951882	-154.197923	-153.998356	0.0	0.0	0.0	0.0		
TS(CH ₃ CH ₂ O)	—	_		—		_		—		
CH ₃ CH ₂ O	-154.300107	-154.099618	-154.331269	-154.131668	-93.21	-92.71	-83.68	-83.66		

Энергетические параметры экстремумов на ППЭ систем H + C₂H₄ и O + C₂H₅, рассчитанные методами B3LYP/6-31G(d) и CBS-QB3

¹Энтальпия при 298.15 К. ²Свободная энергия Гиббса при 298.15 К. ³Относительные к исходным реагентам величины энтальпии при 298.15 К. ⁴Относительнные к исходным реагентам величины энергии Гиббса при 298.15 К. ⁵Мнимые частоты, характеризующие переходные состояния.

образование ПС экзотермично на 0.5 *ккал/моль*. Пересчет экстремумов методом CBS-QB3 приводит к более точному описанию пути реакции и значению для энергии активации прямой реакции (ΔH[#] = 0.62 *ккал/моль*). ΔH[#] обратной реакции составляет 36.1 *ккал/моль*.

Рис. 1. Сечение ППЭ системы $H+C_2H_4$, соответствующее реакции (1), исследованное методами B3LYP/6-31G(d) и CBS-QB3.

Имеющиеся в литературе данные удовлетворительно согласуются с нашими результатами. Полученное в [13] значение энергии активации обратной реакции (38 *ккал/моль*) близко к полученному нами тепловому эффекту прямой реакции (-39.6 *ккал/моль*), что обусловлено корректным определением энергии изолированных продуктов и реагентов и низкой энергией активации прямой реакции.

Ранее экспериментальные значения энергии активации ($E_{a\kappa}$) реакции (1) были определены в пределах 0.5÷7.0 *ккал/моль* [11], а ΔH_{rxn} = -40.1 *ккал/моль* [12]. В работе [13] приведены следующие экспериментальные данные: $E_{a\kappa}$ = 2.5 *ккал/моль* для прямой и $E_{a\kappa}$ = 38.0 *ккал/моль* для обратной реакции. Теоретические исследования, проведенные в [8], дают $E_{a\kappa}$ = 5.1 *ккал/моль* (ΔH_{rxn} = -43.4 *ккал/моль*), а в [10] — $E_{a\kappa}$ = 3.1 *ккал/моль* (ΔH_{rxn} = -43.4 *ккал/моль*), а в [10] — $E_{a\kappa}$ = 3.1 *ккал/моль* (ΔH_{rxn} = -43.4 *ккал/моль*).

В работе [14] показано, что расчеты системы H+C₂H₄ на различных DFT уровнях, т. е. в зависимости от выбранного функционала и базисных функций, приводит к разбросу для E_{ак} от -14.6 до +12.1 *ккал/моль*. Проблема связана с переоценкой полной энергии атомов H, что приводит к отсутствию энергетического барьера в реакциях с переносом ато-192 мов Н. Вместе с тем, эти данные хорошо согласуются с приведенными выше Е_{ак} обратной реакции 36.2÷47.4 *ккал/моль*, если учитывать относительную поправку к экспериментальным значениям.

Система О+С₂H₅. Исследования ППЭ системы О+С₂H₅ методами B3LYP/6-31G(d) и CBS-QB3 показывают (рис. 2), что наиболее вероятным является канал присоединения атома кислорода к этильному радикалу с образованием этоксильного радикала по реакции

$$O + C_2 H_5 \rightarrow C H_3 C H_2 O. \tag{2}$$

Рис. 2. Сечение ППЭ системы О + C_2H_5 , соответствующее реакции (2), исследованное методами B3LYP/6-31G(d) и CBS-QB3.

Из литературных источников известны экспериментальные значения теплот образования реагентов реакции (2): $\Delta H_f^{298K}(O) = 59.57$ [23], $\Delta H_f^{298K}(C_2H_5) = 28.90$ [24], $\Delta H_f^{298K}(C_2H_5O) = -3.25$ *ккал/моль* [25]. Вычисленный на основе этих данных тепловой эффект реакции составляет $\Delta H_{rxn} = -91.72$ *ккал/моль*. Тепловые эффекты, рассчитанные в настоящей работе методами B3LYP/6-31G(d) и CBS-QB3, составили 93.21 и 92.71 *ккал/моль*, соответственно, что хорошо согласуется со значением, рассчитанным по экспериментальным данным. При этом реакция присоединения протекает без активационного барьера, о чем можно судить по результатам сканирования ППЭ системы C_2H_5O по координате R_{C-O} (рис. 3).

Исследования методом CBS-QB3 ППЭ образования радикала CH₃CH₂O путем последовательного присоединения атомов Н и O к этилену, показало, что он находится в потенциальной яме глубиной в 128 ккал/моль (рис. 4).

Рис. 3. Результаты сканирования ППЭ системы CH_3CH_2O методом B3LYP/6-31G(d) по координате $R_{C\!-\!O\!}.$

Рис. 4. Диаграмма энтальпии для CH₃CH₂O. Система рассчитана методом CBS-QB3. Энергии показаны относительно CH₃CH₂O.

Образовавшийся в результате реакций (1) и (2) радикал CH₃CH₂O будет обладать избытком энергии и может подвергаться дальнейшим превращениям. Рассмотрены следующие возможные пути последующего реагирования CH₃CH₂O:

$$CH_{3}CH_{2}O \rightarrow H_{2} + CH_{2}CHO \quad (3.a)$$

$$CH_{3}CH_{2}O \rightarrow CH_{3} + CH_{2}O \quad (3.b)$$

 $\begin{array}{ll} \mbox{CH}_3\mbox{CH}_2\mbox{O}\rightarrow\mbox{H}+\mbox{CH}_3\mbox{CH}_2\mbox{O}\rightarrow\mbox{OH}+\mbox{C}_2\mbox{H}_4 & (3.d) \\ \mbox{CH}_3\mbox{CH}_2\mbox{O}\rightarrow\mbox{CH}_2\mbox{CH}_2\mbox{OH} & (3.e) \end{array}$

Переходные состояния удалось локализовать только для реакций (3.b) TS1 с энергией активации 16.2, (3.c) TS2 — 20.1 и (3.e) TS3 — 28.0 *ккал/моль*, причем гидроксиэтильный радикал, образующийся по реакции (3.e), оказывается глобальным минимумом на ППЭ (рис. 4).

В отличие от более простого индивидуального метода B3LYP/6-31G(d), который предсказывает отсутствие активационного барьера при взаимодействии H + C_2H_4 , при использовании метода CBS-QB3 получается близкое к экспериментальному значение энергии активации. Исследование ППЭ систем H + C_2H_4 и O + C_2H_5 методами B3LYP/6-31G(d) и CBS-QB3 показало, что обе реакции протекают практически без активационного барьера и приводят к образованию аддукта. Последовательное присоединение атомов H и O к этилену приводит к образованию этоксильного радикала с возможностью последующих реакций изомеризации и распада.

ℍ ԵՎ Օ ԱՏՈՄՆԵՐԻ ԷԹԻԼԵՆԻ ՏԵՏ ՏԱՋՈՐԴԱԿԱՆ ՄԻԱՑՄԱՆ ՊՐՈՑԵՄՆԵՐԻ ՔՎԱՆՏԱՔԻՄԻԱԿԱՆ ՈԻՍՈԻՄՆԱՍԻՐՈԻԹՅՈԻՆԸ

Ա.Տ.ԴԱՎԹՅԱՆ

Խտության ֆունկցիոնալի տեսության և ab initio քվանտաքիմիական մեթոդների Հիման վրա ուսումնասիրվել են H և O ատոմների էթիլենին միանալու էներգետիկ ճանապարՀները:

Beck3-Lee-Yang-Parr (B3LYP) մեԹողով ուսումնասիրվել են H+C₂H₄-ի և O+C₂H₅ Համակարգերի պոտենցիալ էներգիայի մակերևույԹները (ՊԷՍ): CBS-QB3 ab initio մեԹողով վերաՀաչվարկվել են ՊԷՍ-ի Հիմնական Էքստրեմումները: Որոչվել են միջանկյալ և անցումային վիճակները, որոնք բերում են ածխաջրածինների օքսիդացման պրոցեսներում կարևոր դեր ունեցող էԹիլ և էԹօքսի ռաղիկալների առաջացմանը:

QUANTUM-CHEMICAL INVESTIGATION OF CONSECUTIVE ADDITION OF *H* AND *O* ATOMS TO ETHYLENE

A. H. DAVTYAN

 A. B. Nalbandyan Institute of Chemical Physics NAS RA 5/2, P. Sevak Str., Yerevan, 0014, Armenia E-mail: aramdav@ichph.sci.am

The energetic pathways of consecutive addition of hydrogen and oxygen atoms to ethylene have been studied by means of *ab initio* methods and in the framework of density functional theory as well.

Potential energy surfaces (PES) of the $H+C_2H_4$ and $O+C_2H_5$ systems were firstly studied using hybrid Beck3-Lee-Yang-Parr (B3LYP) method in 6-31G(d) basis. Then the main extremums of PES were re-calculated using *ab initio* composite method CBS-

QB3. The transition states for the reactions as well as the intermediate adducts leading to formation of ethyl and ethoxy radicals, which play a key role in the process of thermal oxidation of hydrocarbons, were determined. Consecutive addition of H and O atoms to ethylene involves dual chemical activation and leads to formation of the excited adduct C_2H_5O , which due to energy excess is able to overpass potential barriers and transform into CH_2O , CH_3CHO , CH_2CH_2OH .

ЛИТЕРАТУРА

- [1] Mantashyan A.A. // Chem. Phys. Reports, 1996, v. 15, p. 545
- [2] Манташян А.А., Арсентьев С.Д. // Кинетика и катализ, 1981, т, 22, №4, с. 898.
- [3] Grigoryan R.R., Arsentiev S.D., Mantashyan A.A. // React. Kinet. Catal. Letters, 1982, v. 21, №3, p. 347.
- [4] Манташян А.А. // Арм. хим. ж., 1979, т. 32, №6, с. 417.
- [5] Манташян А.А., Арсентьев С.Д. // Кинетика и катализ, 1981, т. 22, №6, с. 1389.
- [6] Асатрян Р.С., Давтян А.Г., Маилян Н.Ш., Арсентьев С.Д., Манташян А.А. // Хим. ж. Армении. 1998, т. 51, №3-4, с. 82.
- [7] Chang A.Y, Bozzelli J.W., Dean A.M. // Z. Phys. Chem., 2000, v. 214, p.1533.
- [8] Nomura O., Iwata S. // Bull. Chem. Soc. Japan, 1980, v. 53, p. 61.
- [9] Schlegel H.B., Bhalla K.C., Hase W.L. // J. Phys. Chem., 1982, v. 86, p. 4883.
- [10] Hase W.L., Schlegel H.B., Balbyshev V., Page M. // J. Phys. Chem., 1996, v. 100, p. 5354.
- [11] Jones W.E., Macknight S.D., Teng L. // Chem. Rev., 1973, v. 73, p. 407.
- [12] Franklin J.L., Dillard J.G., Rosenstock H.M., Rosenstock H.M., Draxl K., Herron J.T. NSRDS-NBS-26 National Bureau of Standards
- [13] Hase W.L., Schlegel H.B. // J. Phys. Chem., 1982, v. 86, p. 3901.
- [14] Jursic B.S. // J. Chem. Soc., Perkin Trans. 2, 1997, p. 637.
- [15] Sosa C., Sghlegel B. // Int. J. Quant. Chem., 1986, v. 29, p. 1001.
- [16] Sousa S.F., Fernandes P.A., Ramos M.J. // J. Phys. Chem. A, 2007, v. 111, p. 10439.
- [17] Frisch M.J. Gaussian 98, Revision A.11, Gaussian, Inc., Pittsburgh PA, 2001.
- [18] Montgomery Jr.J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // J. Chem. Phys., 1999, v. 110, p. 2822.
- [19] Asatryan R., Bozzelli J.W. // J. Phys. Chem. A, 2010, v. 114, p. 7693.
- [20] Asatryan R., Bozzelli J.W., Simmie J.M. // J. Phys. Chem. A, 2008, v. 112, p. 3172.
- [21] Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. // J. Comp. Chem., 1996, v. 17, p. 49.
- [22] Peng C., Schlegel H.B. // Israel J. Chem., 1993, v. 33, p. 449.
- [23] Ruscic B., Pinzon R.E., Morton M.L., Srinivasan N.K., Su M-C., Sutherland J.W., Michael J.V. // J. Phys. Chem. A, 2006, v. 110, p. 6592.
- [24] Berkowitz J., Ellison G.B., Gutman D. // J. Phys. Chem., 1994, v. 98, p. 2744.
- [25] Ruscic B, Boggs J.E, Burcat A, Csaszar A.G., Demaison J, Janoschek R, Martin J.M.L., Morton M.L., Rossi M.J., Stanton J.F., Szalay P.G., Westmoreland P.R., Zabel F., Berces T. // J. Phys. Chem. Ref. Data, 2005, v. 34, №2, p. 573.