
46

Proceedings of NPUA. “Information technologies, Electronics, Radio engineering”. 2016, №1.

UDC 004.8

A REVIEW OF THE USAGE OF MACHINE LEARNING IN REAL-TIME

SYSTEMS

N.H. Abroyan, R.G. Hakobyan

National Polytechnic University of Armenia

In this work, we supply a general overview over the usage of machine learning techniques

in real-time systems. At present, there is a tendency of a full or partial replacement of a human’s

intellectual work by computer programs in every sphere and, for that, there is a need to imitate a

human brain i.e. create something like artificial intelligence. On the one hand, machine learning

has been quite popular and successfully used in various spheres in recent years. Moreover, the

discovery and usage of deep neural networks has immensely increased the efficiency of machine

learning usage. On the other hand, as the amount of data greatly increases and changes in quality

over time, the usage of real-time systems becomes more and more widespread. So it is quite

effective and convenient to use machine learning in real time systems for elaborating a huge

amount of newly generated data. Although nowadays there are several machine learning

algorithms for classification, regression, clustering etc, their traditional usage as supervised or

unsupervised machine learning approach in real-time systems will not be efficient enough

because of some nuances that we are going to talk about in this work.

Keywords: machine learning, classification, regression, real-time system, supervised

learning, unsupervised learning, semi-supervised learning.

Introduction. Interest in machine learning has grown exponentially over the past

two decades, mostly due to a couple underlying factors. First, the expansion of

computers, the internet, and the information economy have generated increasing

volumes and varieties of data, many of which are unstructured (i.e. they cannot be

processed by computers without first requiring human effort to structure them into

machine-readable form). At the same time, computational processing has become

cheaper and more powerful, enabling to carry out faster and more complex

mathematical calculations and increasingly affordable data storage. Machine learning is

a subfield of computer science that evolved from the study of pattern recognition and

the computational learning theory in artificial intelligence. In 1959 Arthur Samuel

defined machine learning as a “field of study that gives computers the ability to learn

without being explicitly programmed”. Machine learning algorithms iteratively learn

from data by generalizing their experience into models. These models allow computers

to find insights that might be difficult or impossible for humans to find. They learn from

previous computations to produce reliable decisions and results.

A system is said to be real-time if the total correctness of an operation depends not

only upon its logical correctness, but also upon the time in which it is performed [1]. So

47

real-time systems have some extra special properties which need some sort of different

attitude and usage of machine learning algorithms, and we are going to study it.

Supervised or unsupervised learning. Traditionally, there have been two

fundamentally different types of tasks in machine learning [2].

The first task is supervised learning. Let X = (x1, … , xn) be a set of n examples (or

points), where xi ∈ X for all i ∈ [n] := {1, ... , n}. Our goal is to learn a mapping from x

to y, given a training set made of pairs (xi, yi). Here, yi∈Y are called the labels or targets

of the examples xi. A standard requirement is that the pairs (xi, yi) are sampled

independently and identically distributed from some distribution, ranging over X×Y.

The task is well defined, since a mapping can be evaluated through its predictive

performance on the test examples. When the labels are continuous, the task is called

regression. When y takes values in a finite set (discrete labels), the task is called

classification [2]. A graphical example of classification is presented in Fig. 1. In this

figure training examples are introduced in the form of circles and triangles, which means

that in the given training set, all examples are already differentiated.

The second is unsupervised learning. Here also, typically, it is assumed that the

points are drawn independently and identically distributed from a common distribution

on X. It is often convenient to define the (n × d) matrix X = (xi
T)i ∈ [n]

T that contains the

data points as its rows. The goal of unsupervised learning is to find an interesting

structure in the data X. It has been argued that the problem of unsupervised learning is

fundamental in terms of estimating a density, which is likely to have generated X.

However, there are also weaker forms of unsupervised learning, such as quantile

estimation, clustering, outlier detection, and dimensionality reduction [2].

Fig. 1. Graphical presentation of an example of supervised learning

A graphical example of clustering is presented in Fig. 2. In this figure, all training

examples are presented in the exact form of circles, which means that initially there is

no any difference among them. Here, our task is to determine some regularity and

classify them into groups. Thus for instance, the density of circles (i.e. training

examples) could serve as a classification regularity in area or space.

48

For real-time systems, before choosing one of those tasks (supervised or

unsupervised), there are two main facts that should be considered.

Fig. 2. Graphical presentation of an example of unsupervised learning

 The training model should take into account the recent history when it makes its

predictions. A good example is the weather; if it has been sunny and 25 degrees the

last two days, it is unlikely that it will be -5 and snow the next day.

 The training model should be updatable. That is, our model should “evolve” based

on the real-time data that we receive. A good example might be a retail sales model

that remains accurate as the business gets larger.

These two phenomena sound like the same thing, but they are potentially very

different. The central question is whether the underlying source generated data is

changing. In case of the weather for the previous few days (also considering the

historical climate statistics), you can usually predict the weather with a high accuracy

for the next day, and your prediction, given the recent history, will be nearly the same

from year to year. Here, the characteristics of climate does not change or changes

insignificantly (climate also tends to change during many years and a reason for that

could be, for instance, the global warming). Eventually, the same model for the last year

will work for this year. In the case of the business, the underlying source is changing;

the business is growing, and our prediction of the sales, given the previous few days of

sales, is probably going to be different from that of the last year. Therefore, the last

year’s data, when the business was small, is not completely relevant to this year’s data,

when the business is larger. We need to update the model (or scrap it completely and

retrain) to get something that works. The first case, where the prediction is conditioned

by history, has not special specific properties to review, supervised learning will work

finely. In the second case, where there is a need to update the model or retrain

completely, we deal with non-stationary data, and here the approaches are as follows:

 Using the incremental method. These are machine learning algorithms that learn

incrementally over the data. That is, the model is updated each time it sees a new

49

training instance. There are incremental versions of Support Vector Machines and

Neural networks. Bayesian Networks can be made to learn incrementally.

 Using periodic re-training with a batch algorithm. Perhaps this is a more

straightforward solution. Here, we simply buffer the relevant data and retrain our

model by some period.

In case of using supervised learning, if our data is changing in quality over time

and we want our predictions to remain accurate, there is a need of doing predictions

manually and appending them to our training set. This approach is not an effective one,

because over time, there is a need of human intervention. On the other hand, using

unsupervised learning is not always acceptable. For instance, in financial data, there

should be at least some labeled data in order to do sensible prediction. For that reason,

we can choose something between supervised and unsupervised learning, which is

called semi-supervised learning.

Semi-supervised learning is halfway between supervised and unsupervised

learning. In addition to unlabeled data, the algorithm is provided with some supervision

information – but not necessarily for all examples. Often, this information will be the

targets associated with some of the examples. In this case, the data set X=(xi)i∈[n] can be

divided into two parts: the points Xl:=(x1, ... ,xl), for which labels Yl:= (y1, ... , yl) are

provided, and the points Xu:= (xl+1, ... ,xl+u), the labels of which are not known [2]. Using

semi-supervised learning, there can be a way to predict based on the initial labeled data

and always renew the real-time unlabeled data. A graphical example of semi-supervised

learning is shown in Fig. 3. In this figure, we have presented both labeled (circles and

triangles) and unlabeled (dots) data. This means that some of our training examples are

already labeled, but the others are not labeled and there is a need to find regularities

among them and classify them into groups.

Fig. 3. Graphical presentation of an example of semi-supervised learning

The first usage of semi-supervised learning is known as self-learning. That was the

earliest idea about using unlabeled data in classification of self-learning, which is also

50

known as self-training, self-labeling or decision-directed learning. This is a wrapper-

algorithm that repeatedly uses a supervised learning method. It starts by training on the

labeled data only. In each step a part of the unlabeled points is labeled according to the

current decision function; then the supervised method is retrained, using its own

predictions as additional labeled points. This idea can be found in literature (e.g.,

Scudder (1965); Fralick (1967); Agrawala (1970)) [2].

Thus, one should not be too surprised that for semi-supervised learning to work,

certain assumptions will have to be held. One of such most popular assumptions can be

formulated as follows. If two points x1, x2 are close, so should be the corresponding

outputs y1, y2. Clearly, without such assumptions, it would never be possible to

generalize from a finite training set to a set of possibly infinitely many unseen test cases

[2].

Considering this, there is a need of generalization of the smoothness assumption

that is useful for semi-supervised learning, which is called “semi-supervised smoothness

assumption”. While in the supervised case, according to our prior beliefs, the output

varies smoothly with the distance, we now also take into account the density of the

inputs. The assumption is that the label function is smoother for semi-supervised

learning in high-density smoothness assumption regions than in low-density regions. If

two points x1, x2 in a high-density region are close, so should be the corresponding

outputs y1, y2. Note that by transitivity, this assumption implies that if two points are

linked by a path of high density (e.g., if they belong to the same cluster), their outputs

are likely to be close. If, on the other hand, they are separated by a low-density region,

their outputs need not be close. Note that the semi-supervised smoothness assumption

applies to both regression and classification [2].

In case of using machine learning in real-time systems too, there are two main

things to consider:

 Data Horizon: How quickly do we need the most recent datapoint to become part of

our model? Does the next point need to modify the model immediately?

 Data Obsolescence: How long does it take the data to become irrelevant to the

model? Good examples come from economics; generally, newer data instances are

more relevant. However, in some cases data from the same quarter from the previous

year are more relevant than the previous quarter of the current year.

Keeping performance high. To improve the prediction accuracy, there is a need

for having many mutual exclusive training features. The increase of the features’

number leads to a decrease in the machine learning algorithm performance. On the other

hand, it is obvious that in real-time, the systems’ performance is very important. So

there is a need of wisely choosing the features. We need a minimum number of features,

which can ensure a high rate of accuracy. To achieve that, we can use deep learning.
Deep learning (more correctly deep machine learning) is a branch of machine

learning based on a set of algorithms that attempt to model high-level abstractions in

data by using multiple processing layers with complex structures, or otherwise

composed of multiple non-linear transformations. During the past several years, the

51

techniques developed from deep learning research have already been impacting a

wide range of areas and aspects of machine learning and artificial intelligence [3].

There are several definitions of deep learning and one of them is that deep learning is

replacing handcrafted features with efficient algorithms for unsupervised or semi-

supervised feature learning and hierarchical feature extraction [4].

During the last several years, many universities’ and information technology

companies’ researchers have demonstrated the empirical success of deep learning in

different applications of computer vision, phonetic recognition, voice search,

conversational speech recognition, speech and image feature coding, semantic

utterance classification, natural language understanding, hand-writing recognition,

audio processing, information retrieval, robotics etc. [3].

Deep learning algorithms are based on distributed representations. The underlying

assumption behind distributed representations is that the observed data are generated by

the interactions of many different factors at different levels. Deep learning adds the

assumption that these factors are organized into multiple levels, corresponding to

different levels of abstraction or composition. The varying numbers of layers and layer

sizes can be used to provide different amounts of abstraction [5]. Deep learning exploits

this idea of hierarchical explanatory factors where higher level, more abstract concepts

are learned from the lower level ones. These architectures are often constructed with a

greedy layer-by-layer method. Deep learning helps to disentangle these abstractions and

pick out the features useful for learning [5]. Many deep learning algorithms are applied

on unlabeled data (which is usually more abundant than labeled data), making this an

important benefit of these algorithms. The deep belief network is an example of a deep

structure that can be trained in an unsupervised manner [5]. One of the most popular

algorithms of deep learning is deep neural networks. An example of deep neural network

is presented in Fig. 4. Another method of keeping performance high is parallelization.

For increasing a program’s performance, there is a need to parallelize that program,

especially the algorithms that are used in that program [6]. So, high performance can

also be achieved by parallelizing the known machine learning algorithms or evaluating

new ones by using parallelization methods. There could be different approaches to

parallelizing of machine learning algorithms. Both SIMD (single instruction – multiple

data) and MIMD (multiple instruction – multiple data) parallelization types may work

here. One of the MIMD parallelization ways can be the modification of the algorithm

in the way of those operations in loops, and frequently executed instructions satisfy

Bernstein’s conditions. Every iteration can be performed independently from the

previous one. In this case parallelization can be done through a pipeline mechanism [6].

Another way of MIMD parallelization is parallelization through multithreading.

Threading provides a mechanism for programmers to divide their programs into more

or less independent tasks with the property that when one thread is blocked another

52

thread can be run [6].

Fig. 4. An example of deep neural network

SIMD parallelization also would be effective for machine learning algorithms since

many algorithms involve operations with matrixes. Many operations with matrixes can

be parallelized quite well and in many cases it is done through GPU (graphical

processing unit). Today, parallel GPUs have begun making computational inroads

against the CPU (central processing unit), and a subfield of research, dubbed GPU

Computing or GPGPU for General Purpose Computing on GPU, has found its way into

fields like machine learning, oil exploration, image processing, linear algebra, statistics,

3D reconstruction, stock options pricing determination etc. Their highly parallel

structure makes them more effective than general-purpose CPUs for SIMD

parallelizations.

Conclusion. In this work, we introduced a general overview on the usage of

machine learning in real-time systems. We showed that for better result it would be

more effective to use the semi-supervised learning method. For real-time systems there

is a need to take into account such factors as model adaptiveness, data change over time,

data obsolescence, etc. For ensuring high performance in real-time systems, there is a

need for choosing features by wisely using deep learning. Also parallelization of

machine learning algorithms is also an acceptable way of keeping performance high.

References

1. Shin K.G., Ramanathan P. Real-time computing: a new discipline of computer science

and engineering // Proceedings of the IEEE.- Jan. 1994.- 82 (1).- P. 6–24.

53

2. Olivier Chapelle, Bernhard Scholkopf, Alexander Zien. Semi-Supervised Learning.-

Cambridge, Massachusetts: The MIT Press, 2006.- 528 p.

3. Deng L., Yu D. Deep Learning: Methods and Applications // Foundations and Trends in

Signal Processing.- 2014.- 7.- P. 3–4.

4. Song H.A., Lee S.Y. Hierarchical Representation Using NMF // Neural Information

Processing. Lectures Notes in Computer Sciences 8226.- Springer, Berlin Heidelberg,

2013.- P. 466–473.

5. Bengio, Y., Courville A., Vincent P. Representation Learning: A Review and New

Perspectives // IEEE Transactions on Pattern Analysis and Machine Intelligence.- 2013.- 35

(8).- P. 1798–1828.

6. Abroyan N.H., Hakobyan R.G. Parallelization of Sorting Algorithms // Computer Science

and Information Technologies.- 2015.- P. 201-205.

Received on 07.04.2016.

Accepted for publication on 20.05.2016.

ԻՐԱԿԱՆ ԺԱՄԱՆԱԿԱՅԻՆ ՀԱՄԱԿԱՐԳԵՐՈՒՄ ՄԵՔԵՆԱՅԱԿԱՆ ՈՒՍՈՒՑՄԱՆ

ՕԳՏԱԳՈՐԾՄԱՆ ԸՆԴՀԱՆՈՒՐ ԱԿՆԱՐԿ

54

ОБЩИЙ ОБЗОР ПРИМЕНЕНИЯ МАШИННОГО ОБУЧЕНИЯ В

СИСТЕМАХ РЕАЛЬНОГО ВРЕМЕНИ

Н.О. Аброян, Р.Г. Акопян

Рассматривается общая характеристика использования машинного обучения в

системах реального времени. Люди стараются посредством компьютерных программ

полностью или частично имитировать работу человеческого мозга – создать

искусственный интеллект. С одной стороны, в последние годы машинное обучение

получило широкое распространение и удачно применялось для этой цели. Более того,

использование глубоких нейронных сетей привело к повышению производительности

машинного обучения. С другой стороны, так как количество данных со временем

увеличивается и они претерпевают качественные изменения, применение систем

реального времени становится актуальным и распространенным. Таким образом,

применение машинного обучения в системах реального времени для обработки

получаемых данных становится достаточно продуктивным и удобным. Несмотря на то,

что в настоящее время существует ряд алгоритмов машинного обучения для

классификации, регрессии, кластеризации и т.п., их классическое использование в

качестве контролируемого или неконтролируемого машинного обучения неэффективно в

системах реального времени ввиду некоторых особенностей, которые приведены в этой

работе.

Ключевые слова: машинное обучение, система реального времени, контроли-

руемое обучение, неконтролируемое обучение, полуконтролируемое обучение.

