НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ ЭНЕРГИИ

УДК 538.971

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ПРОЗРАЧНЫХ ПЛЕНОК ОКСИДА ЦИНКА ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Ж.Р. Паносян¹, А.А. Аракелян², Г.Г. Мнацаканян^{1,2}

¹ Национальный политехнический университет Армении ² Институт физических исследований НАН РА

Разработана методика получения прозрачных как электропроводящих, так и диэлектрических пленок ZnO, легированных примесью лития (Li). Наряду с распространенным *n*-типом проводимости ZnO стало возможным выращивать ZnO с *p*-типом проводимости с целью создания *n-p* гомогенных переходов для солнечных элементов (CЭ). Измерения темновой и фотопроводимости солнечного элемента проводились в широком диапазоне частот $0...10^{10}$ Г μ . Исследования фотоэлектрических свойств показали, что при легировании ZnO литием можно добиться значительного увеличения фотопроводимости СЭ, что позволяет создавать эффективные солнечные элементы для применения как на Земле, так и в Космосе. Разработанная технология электронно-лучевого вакуумного напыления одновременно позволяет построить как источники электричества, так и твердотельные фотоприемники ультрафиолетового (УФ) диапазона 290...340 *нм*.

Легированные литием пленки ZnO демонстрируют как высокую фотопроводимость к видимому и УФ излучению, так и высокую прочность к внешним воздействиям. Полученные различные высоты барьеров Шоттки для темновых токов ($\Phi_d = 0,42 \ \beta B$) и фототоков ($\Phi_{ph} = 0,98 \ \beta B$) объясняются переносом заряда для фото- и темновых носителей различными механизмами переноса заряда. Разработаны солнечные элементы, предназначенные для использования в высокогорных областях и на космических аппаратах, которые наравне с видимым излучением преобразуют и УФ излучение. В этих СЭ использовалась пленка ZnO:Li в качестве резистивного буферного i-го слоя для преобразования УФ излучения.

Ключевые слова: солнечный фотоэлемент, ультрафиолетовое излучение, Космос, высокогорная область, тонкопленочный, легированный оксид цинка.

Введение. В связи с ростом потребления человечеством энергетических ресурсов планеты, что чревато экологическими проблемами и близкой перспективой исчезновения традиционных источников энергии, возникает необходимость в альтернативных источниках энергии. В числе ведущих и развивающихся направлений энергетики отметим солнечную, в частности, гетероструктурную энергетику, использующую весь диапазон солнечного излучения. Благодаря Солнцу каждый день на Землю поступает огромное количество энергии (165 000

трлн *Bm*). Однако эффективное использование энергии Солнца затруднено вследствие того, что солнечное излучение доходит до поверхности Земли в виде довольно рассеянного потока энергии, и поэтому, чтобы повсеместно применять солнечные элементы, их коэффициент полезного действия (КПД) должен быть достаточно высоким. В данной области проведена серьёзная работа, направленная на удешевление и упрощение технологии производства СЭ во всём диапазоне излучения солнечной энергии [1,2]. Также ведётся поиск материалов, позволяющих получить высокие показатели преобразования солнечной энергии в электрическую с минимальными затратами [3].

ZnO-пленки - широкозонные полупроводники *n*-типа. Они могут найти широкое применение в оптоэлектронных устройствах, газовых датчиках, УФ приемниках и солнечных элементах, светоизлучающих устройствах и других устройствах прозрачной электроники. Известно также, что легирование ZnO различными элементами позволяет получать пленки с новыми интересными оптическими и электрическими свойствами. Например, легирование ZnO Li, Al, Ga или F увеличивает проводимость пленки без ухудшения пропускания в видимой области, легирование ионами Li увеличивает его удельное сопротивление. При соответствующей технологии легирования [3] можно получить пленки ZnO p-типа, на основе только пленок ZnO можно создать p-n-переходы [4]. Использование как чистых, так и легированных пленок ZnO в качестве материала для создания УФ фотоприемников рассматривается в [5,6]. В полупроводниках существуют два механизма переноса заряда: перенос заряда в зоне проводимости из-за дрейфа носителей и перенос заряда носителями, возбужденными в локализованные состояния вблизи уровня Ферми в зоне примесной проводимости. Оба типа переноса заряда могут вносить вклад в проводимость (постоянный и переменный токи).

Постановка задачи и обоснование экспериментальной методики. Для изготовления СЭ на основе пленок ZnO исследованы электрические и фотоэлектрические свойства пленок ZnO, легированных литием или галлием. Проведены исследования механизмов проводимости для постоянного и переменного токов. Кроме СЭ, полученные результаты могут быть использованы для создания УФ фотоприемников. СЭ, легированные литием ZnO, могут быть использованы в качестве основного чувствительного слоя гетероструктуры.

В качестве подложек использовался монокристаллический сапфир с размером 20×30 *мм*² и ориентацией (0001). Пленки ZnO были получены методом электронно-лучевого вакуумного напыления. Они имели ориентацию [0001] перпендикулярно плоскости подложки. Образцы были изготовлены в одинаковых условиях: энергия электронов была ~ 6 *кэВ*, температура подложки поддерживалась в диапазоне 250±1°C, скорость роста составляла 1,45 *нм/с*. На каждой подложке были получены фотоэлемент с площадью 1 cm^2 . В качестве омических контактов к *p*-CuInSe² использовался металлический молибден Mo/CuInSe², а к Ag/n-CdS полученный контакт Ag/CdS проходил электрическое формирование. Металлические контакты (4 шт.) были выведены на сапфировую подложку. Этот метод напыления приводит к созданию пленок с дефицитом кислорода, поэтому проводился дополнительный отжиг пленок на воздухе для насыщения кислородом. Такой отжиг приводит к уменьшению кислородных вакансий и, как следствие, к уменьшению донорных центров. Мишени для напыления изготовлялись методом твердофазного синтеза с добавлением донорной примеси Ga или акцепторной примеси Li.

Измерение концентрации Ga проводилось методом рентгеновского энергодисперсионного микроанализа "OXFORD-INCA Energy350", интегрированного с электронным микроскопом "Vega". Микроанализ выполнялся при энергии электронного зонда 10 и 20 кэВ. Анализ производился при 1000-кратном увеличении. На основе полученных результатов предложены механизмы переноса заряда, ответственные за темновую и фотопроводимость.

Измерения фотопроводимости и времени релаксации фотопроводимости проводились модулированным оптическим излучением при постоянном напряжении смещения. В качестве источника УФ излучения использовалось излучение светодиода L-7113UV ($hv = 3,14 \ B$), интенсивность которого на поверхности пленки составляла 5,2 mBm/cm^2 . В качестве омических контактов на поверхность пленки ZnO наносился металлический алюминий, и таким образом создавалась планарная структура металл-полупроводник-металл (MIIM).

Для определения зависимости удельного сопротивления пленок по длине образцов и величины падения напряжения на контакте Al–полупроводник применялся метод движущегося зонда. Сбор данных и управление экспериментом осуществлялись с помощью системы DAQ-board фирмы National Instruments. Холловская подвижность измерялась методом Ван-дер-Пау при напряженности магнитного поля 1...2 *T*. Кристаллическое качество и ориентация пленок оценивались с помощью дифрактометра "DRON-3" с использованием излучения CuKa (λ =0,1542 *нм*) [7,8].

Измерения фотопроводимости при постоянном токе проводились при фиксированном напряжении смещения ($\pm 160 B$). Измерения фотопроводимости на переменном токе в диапазоне $10^2...10^4 \Gamma u$ проводились с мостовой схемой, а в более высокочастотном диапазоне ($5 \cdot 10^4 ... 3 \cdot 10^8 \Gamma u$) - с использованием Q-метра (E4 - 7, E4 - 11). Эквивалентная схема, состоящая из параллельных конденсаторов (C) и последовательно соединенных резисторов R, была использована для расчета реальной и мнимой частей темновой проводимости и фотопроводимости. Значение для R рассчитывали по формуле $R = \frac{Q_1 Q_2}{\omega C(Q_1 - Q_2)}$, где $\omega = 2\pi f$ - частота электрического поля; Q_1 и $(Q_2 - Q)$ - коэффициенты измерительной системы до и после освещения [9].

Результаты исследования. Полученная планарная структура металл-полупроводник Al-ZnO:Li имела линейную вольт-амперную характеристику (BAX), обусловленную омическим характером контакта. С помощью барьера Шоттки, в котором преобладает компонент термоэлектронной эмиссии тока над туннельной компонентой, можно оценить высоту барьера $\boldsymbol{\Phi}_{\mathbf{b}}$ из выражения для омического контакта с удельным сопротивлением $R_{\rm C}$ [10]:

$$R_{C} = \left(k/qA^{**}\right)\exp\left(\Phi_{\rm D}/kT\right),\tag{1}$$

где k - постоянная Больцмана; T - абсолютная температура; A^{**} - эффективный коэффициент Ричардсона; q - заряд электрона. Коэффициент Ричардсона можно получить из уравнения: $A^* = 4\pi q m^* k^2 / h^3$, $A^{**} = A^*$ m*, где m * \approx 0,27 [11] – эффективная масса носителя заряда (предполагается, что величина эффективной массы носителя заряда не зависит от концентрации лития).

Для ZnO пленок A^{**} оценивается приблизительно ~35 A/cm^2K^2 . Измеренное значение удельного сопротивления омического контакта Al-ZnO:Li составляет $R_{\rm C} = 0,009 \ Omcm^2$. Высота барьера Шоттки $\Phi_{\rm D}$ была определена равной 0,42 эВ для темнового тока.

На рис. 1 показана вольт-амперная характеристика в плоской структуре Al-ZnO:Li-Al (Li-0,8 ат.%) для темновой проводимости (кривая 1) и фотопроводимости (кривая 2). В обоих случаях характеристики ВАХ симметричны для положительного и отрицательного напряжений, поэтому показаны только положительные ветви. Темновая ВАХ линейная, это означает омический характер контактов с малой высотой барьера.

Рис. 1. Вольт-амперные характеристики темновой (кр. 1) и фотопроводимости (кр. 2). На вставке показана начальная область ВАХ для определения значения фототока насыщения J_S

Характеристики световой ВАХ имеют экспоненциальное поведение, что свидетельствует о существовании барьера Шоттки со значительной высотой Φ_{ph} . Можно вычислить высоту барьера Шоттки из выражения

$$J_{\rm S} = A^{**} T^2 \exp(-\Phi_{\rm ph} / kT).$$
 (2)

Ток насыщения J_S определяется по графику ВАХ в полулогарифмическом масштабе (вставка на рис.1). Пересечение прямой линии с осью I дает значение тока насыщения $J_S = 0,022 \cdot 10^{-6} A$, что соответствует плотности тока (5 $\cdot 10^{-12} A / cm^2$). Таким образом, высота барьера Шоттки равна $\Phi_{ph} = 0.98 \ Bar{s}B$.

Можно объяснить различные значения барьерных высот Шоттки для темнового тока ($\Phi_D = 0,42 \ \beta B$) и фототока ($\Phi_{ph} = 0,98 \ \beta B$), если предположить существование различных механизмов переноса носителей заряда. В случае фототока перенос заряда осуществляется в зоне проводимости с помощью дрейфового механизма, а в случае темнового тока - в примесной зоне модели Хаббарда, расположенной в запрещенной зоне с помощью прыжкового механизма.

На рис. 2 показана величина фототока в зависимости от интенсивности УФ облучения. Здесь использовался светодиод L-7113UV ($hv = 3,14 \ B$), оптическое излучение плавно возрастало в диапазоне 0...200 $m\kappa Bm/cm^2$. Фотоотклик рассчитывался по формуле (M=I/W), где *I* - ток, *W* - мощность УФ излучения. Полученная на основе эксперимента (рис. 2) величина фотоотклика, приведенная на единичной поверхности образца, составляла примерно 0,017 *A/Bm*. Величина фотоотклика для различных образцов варьировалась в диапазоне $M = 0,017...0,02 \ A/Bm$.

Рис. 2. Зависимость фототока от интенсивности УФ излучения в структуре

Рис. 3. Спектральные зависимости тока фотопроводимости для планарной структуры Al-ZnO:Li-Al и фототока вертикальной гетероструктуры CdS/ZnO:Li/CuInSe²

На рис. 3 показаны спектральные зависимости тока фотопроводимости для планарной структуры Al-ZnO:Li-Al и фототока вертикальной гетероструктуры CdS/ZnO:Li/CuInSe². Пленка ZnO:Li выполняет роль *i*-го слоя. Спектральная зависимость фотопроводимости позволила определить энергию активации для фотопроводимости (~ 3,15 эB), а спектральная зависимость фототока - энергию уровня Ферми. Разница между этими значениями определяет высоту барьера Шоттки. Здесь необходимо отметить, что пленка ZnO: Li имеет зазор между энергетическими зонами ~ 3,33 эB [8]. Поэтому, когда энергия фотона превышает

энергию запрещенной зоны hv > Eg, происходит генерация электронно-дырочной пары.

Фототок возникает, если энергия фотона превышает барьерное значение *p-n* перехода CdS/CuInSe², $hv > \Phi_{ph}$; тогда электроны возбуждаются и вводятся в зону проводимости полупроводника [12]. В структуре CdS/ZnO:Li/CuInSe², ZnO:Li – *i-й* слой для УФ излучения, как видно из рис. 3, происходит преобразование УФ излучения в диапазоне 3,6...4,0 эВ в электрический ток. Преобразование энергии в этом диапазоне представляет интерес для солнечных элементов, используемых в теории, развитой Фаулером [10]. Зависимость квантового выхода R от энергии фотонов hv для фотоэлектронов дается формулой $R \sim (hv - \Phi_{ph})^2$. Для получения энергии активации фотопроводимости (3,15 эВ) и энергии уровня Ферми (0,12 эВ) построены зависимости (квадратный корень) фототока от энергии фотона.

Рис. 4. Кинетика нарастания (a) и затухания (b) изменения фотопроводимости структуры Al–ZnO: Li –Al

На рис.4 показана зависимость изменения добротности (ΔQ -фактора) плоской структуры Al-ZnO:Li-Al при включении и выключении УФ излучения. Измерения проводятся на частоте 5·10⁴ Г μ . Включение УФ излучения способствует увеличению фотопроводимости и, соответственно, уменьшению Q-фактора. Как видно из рисунка, время нарастания фототока составлено из двух компонентов. Ориентировочно их можно разделить на быструю (τ_f) и медленную (τ_s) составляющие. Аналогичные двухкомпонентные зависимости времени релаксации фотопроводимости наблюдались ранее [5].

Для полупроводников, в которых фотоэлектроны и термоэлектроны дрейфуют в зоне проводимости, совпадают время нарастания и время максвелловской релаксации фотоотклика [12]. Существенное разное поведение этих параметров в пленках ZnO: Li также можно рассматривать как косвенное подтверждение существования различных зон для переноса заряда фото- и темновыми токами.

Выводы. Исследованы легированные Li пленки ZnO, которые предназначены для использования в гетероструктурах CdS/ZnO:Li/CuInSe² с целью высокоэффективного преобразования УФ излучения. Исследована зависимость фототока гетероперехода от энергии фотона. Получено высокоэффективное преобразование фотонов в спектральном диапазоне 3,4...3,8 эВ. На основе проведенных исследований темнового и фототоков были рассчитаны высоты барьера Шоттки для перехода Al-ZnO:Li. Полученные различные высоты барьеров Шоттки для темновых токов ($\Phi_d = 0,42$ эВ) и фототоков ($\Phi_{ph} = 0,98$ эВ) объясняются переносом носителей заряд по различным зонам. Исследованные гетероструктуры с использованием разработанной технологии пленок ZnO:Li позволяют создать солнечные элементы, предназначенные для использования в высокогорных областях и на космических аппаратах.

Авторы выражают благодарность кандидатам физико-математических наук Р.К. Овсепяну и Э.Е. Элбакяну за помощь при оформлении статьи.

Литература

- Получение и изучение халькогенидных полупроводниковых пленок для изготовления солнечных фотоэлементов / Ж.Р. Паносян, А.Н. Кочарян, С.С. Восканян, Г.Г. Торосян и др. // Вестник НПУА: Сборник научных статей.-2017.- Ч. 1.- С. 38-44.
- Паносян Ж.Р., Ераносян М.А., Кочарян А.Н., Варданян Г.П. Исследование поверхностной структуры пленок теллурида кадмия, изготовленных электрохимическим методом// Вестник НПУА: Электротехника, энергетика.- 2017.-N 2.- С. 60-69.
- Yamamoto T. Codoping for the fabrication of p-type ZnO.- Thin Solid Films. -2002.-420-421.-P.100-106.
- Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis / J.M. Bian, X.M. Li, C.Y. Zhang, L.D. Chen, et al //Appl. Phys. Lett. -2004.-84.-P. 3783-3785.
- Sharma P., Sreenivas K., Rao K.V. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering //Appl. Phys. -2003.-93.-P. 3963.
- Compositionally-tuned epitaxial cubic Mg_xZn_{1-x}O on Si (100) for deep ultraviolet photodetectors / W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, et al //Appl. Phys. Lett. -2003.-82.-P.3424-3429.
- Influence of thermal annealing on optical and electrical properties of ZnO films prepared by electron beam evaporation / N.R. Aghamalyan, I.A. Ghambaryan, E.Kh. Goulanian, R.K. Hovsepyan, et al //Semicon. Sci. and Technol. -2003.-18.-P. 525-529.
- Effect of lithium impurity on the opto-electrical properties of zinc oxide films / N.R. Aghamalyan, E.Kh. Goulanian, R.K. Hovsepyan, E.S. Vardanyan, et al //Physica Status Solidi (a). - 2003.- 199.- P.425-430.

- Aghamalyan N.R., Hovsepyan R.K., Poghosyan A.R. Transparent conductive ZnO films for solar cell applications: photoelectric and spectral properties.// Proceedings SPIE. -2004.-5520.- P.161-167.
- 10. Sze S.M. Phys. of Semicond. Devices.- Berlin, New York, Wiley&Sons, 1981.-264 p.
- 11. Hummel R.E. Electronic Properties of Materials.- Springer, Berlin, 1992.-373 p.
- Bube R.H. Photoelectronic Properties of Semiconductors.- Cambridge, Cambridge University Press, 1992.- 318 p.

Поступила в редакцию 08.10.2018. Принята к опубликованию 14.12.2018.

ԱՐԵԳԱԿՆԱՅԻՆ ԷԼԵՄԵՆՏՆԵՐԻ ՀԱՄԱՐ ՑԻՆԿԻ ՕՔՍԻԴԻՑ ԹԱՓԱՆՑԻԿ ԹԱՂԱՆԹՆԵՐԻ ՍՏԱՑՈՒՄԸ ԵՎ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ

ժ.Ռ. Փանոսյան, Ա.Ա. Առաքելյան, Գ.Գ. Մնացականյան

Մշակվել է մեթոդաբանություն, որը թույլ է տվել ZnO-ը լեգիրազնել լիթիումի (Li) խառնուկով և միաժամանակ ստանալ ինչպես լուսաթափանց էլեկտրահաղորդիչ, ալնպես էլ դիէկլեկտրական հատկություններով թաղանթներ։ ո-տիպի հաղորդականությամբ տարածված ZnO-ի հետ մասին հնարավոր եղավ ստանալ p-տիպի հաղորդականությամբ ZnO, որպեսզի ստեղծվի ո-ք հոմոկառուզվածքով արեգակնային էլեմենտ։ Արեգակնային էլեմենտների մթնային և ֆոտոէյեկտրական չափումները կատարվել են (0...10¹⁰) *<g* հաճախությունների լայն տիրույթում։ Արեգակնային ֆոտոէյեմենտների ուսումնասիրությունները ցույց տվեցին, որ ZnO-ի՝ լիթիումով լեգիրումը զգալիորեն մեծացնում է ֆոտոհաղորդականությունը, որը թույլ է տալիս պատրաստել արեգակնալին արդյունավետ ֆոտոէլեմենտներ ինչպես երկրային, այնպես էլ տիեզերքում կիրառումների համար։ Էլեկտրոնային փնջով վակուումալին փոշեցրման մշակված տեխնոլոգիան միաժամանակ թուլլ է տալիս պատրաստել ինչպես արեգակնալին էներգիալի էլեկտրական աղբլուրներ, այնպես էլ պինդմարմնալին ֆոտորնդունիչներ անդրմանուշակագույն (290...340)նմ տիրուլթներում։ Լիթիումով լեգիրված ZnO-ն ցուցաբերում է բարձր ֆոտոհաղորդականություն տեսանելի և անդրմանուշակագույն ճառագայթների, ինչպես նաև բարձր կայունությամբ արտաքին ազդեզությունների նկատմամբ։ Շոտտկի բարլերի տարբեր բարձրություններ են չափվել մթնային հոսանքի ($\Phi_{
m d}$ = 0,42 *էՎ*) և ֆոտոհոսանքի ($\Phi_{
m ph}$ = 0,98 *էՎ*) դեպքում, որը բազատրվում է տարբեր մեխանիզմներով ֆոտո– և մթնային հոսանքակիրների անցումներով։ Մշակված արեգակնալին էլեմենտները նախատեսված են բարձրլեռնալին շրջաններում և տիեզերական սարքերում կիրառման համար, քանի որ տեսանելի լույսի հետ կերպափոխվում է նաև անդրմանուշակագույն ճառագալթումը։ Արեգակնալին ալդ էլեմենտներում լիթիումով լեգիրված ZnO թաղանթն օգտագործված է որպես դիմադրողական բուֆերային i-շերտ անդրմանուշակագույն ճառագայթների կերպափոխման համար։

Առանցքային բառեր. արևային ֆոտոէլեմենտ, անդրմանուշակագույն ճառագայթներ, տիզերք, բարձրլեռնային գոտի, բարակ թաղանթ, լեգիրված ցինկի օքսիդ։

OBTAINING AND RESEARCH OF TRANSPARENT ZINC OXIDE FILMS FOR SOLAR CELLS

Zh.R. Panosyan, A.A. Arakelyan, G.G. Mnatsakanyan

A technique to obtain both transparent electrically conductive and dielectric ZnO films doped with a lithium (Li) impurity is developed. Along with the common *n*-type conductivity of ZnO, it has become possible to grow ZnO with p-type conductivity to create n-p homogeneous transitions for solar cells (ESS). Measurements of the dark and photoconductivity of a solar cell were carried out in a wide frequency range $(0...10^{10})$ Hz. Studies of photoelectric properties have shown at doping with ZnO:Li, it is possible to achieve a significant increase in the photoconductivity of solar cells, which makes it possible to create solar cells for both terrestrial and space applications. The developed technology of electron-beam vacuum deposition allows one to build both sources of electricity and solid-state photodetectors of the ultraviolet range (290...340) nm. The lithium doped ZnO films demonstrate both high photoconductivity towards visible and ultraviolet radiation and high strength to external impacts. Li-doped ZnO films that demonstrate high photosensitivity when used in solar cells for more efficient conversion of the UV range have been investigated. From the current-voltage characteristics of the dark and photocurrents, the Schottky barrier heights for the Al-ZnO: Li transition were calculated. The various heights of the Schottky barriers for dark currents ($\Phi_d = 0.42 \ eV$) and photocurrents (Φ_p) $= 0.98 \ eV$) obtained are explained by charge transfer for photo and dark carriers by different charge transfer mechanisms. Solar cells have been developed for use in high-altitude areas and on spacecraft, which, like visible radiation, also converts the UV radiation.

In these SC, a ZnO: Li film was used as a resistive buffer *i*-layer for converting the UV radiation.

Keywords: ultra-violet solar cell, cosmic and high mountainous application, thin films, zinc oxide doping.