УДК 665.939.5: 66.02/09.004.67/541.64.542.944

ПОЛИМЕРНЫЕ ВАЛЬЦЕНАТЫ ДЛЯ КЛЕЕВЫХ КОМПОЗИЦИЙ

В.А. Петросян

Общественная благотворительная организация "Нои Завакнер"

Полимерные композиты с адгезивными свойствами являются одной из наиболее востребованных областей практического применения для совмещенного механоклеевого метода восстановления деталей машин из полимерных материалов в трансплантологии, в стоматологии и др. С целью модификации полимерных композитов с приданием им адгезивных свойств в представленной работе используется метод совместного вальцевания диеновых каучуков с добавками небольших количеств (0,05...1,00 масс. %) комплексов амид-бром. Показано, что совместное пластифицирование диеновых полимеров с комплексами амид-бром на механических вальцах приводит к образованию частично модифицированных продуктов - вальценатов.

Ключевые слова: вальценат, полимераналоговое превращение, адгезия, клеевые композиции, ИК спектроскопия.

Введение. В настоящее время используются различные подходы к синтезу и модификации композитов с адгезивными свойствами. В докладе А.А. Берлина [1] на Шестой Всероссийской Каргинской конференции был проведен глубокий анализ имеющихся методов и путей получения конструктивных полимерных композитов и перспектив их синтеза, в том числе композитов с адгезивными свойствами. В синтезе конструктивных полимерных композитов особое место занимают как процессы с варьированием исходных компонентов получаемых продуктов, так и режимы и техника их получения [2-4].

В представленной работе предлагается метод совместного вальцевания исходных компонентов получаемого композита.

Продукты совместного вальцевания (вальценаты) диеновых каучуков с синтезированными ранее нами небольшими количествами (0,05...1,00 масс. %) комплексов амид-бром [5,6] вследствие происходящего гетерогенно полимераналогового превращения частично модифицируются, приобретая адгезионно-активные функциональные группы [7].

Нами получены и изучены свойства вальценатов на основе хлоропреновых, бутадиеновых, бутадиенстирольных, бутадиеннитрильных, бутадиенвинил-

пиридиновых, бутадиенакрилонитрилвинилпиридиновых каучуков и диенстирольных термоэластопластов.

Можно предположить, что аналогично гомогенному взаимодействию комплексов с ненасыщенными полимерами в макромолекулах продуктоввальценатов, образуются бромиммониевые группы, которые под воздействием различных факторов (температура, влага и др.) вследствие полимераналоговых превращений могут превратиться в другие более стабильные функциональные группы (формильные, бромидные и др.) [8,9].

Результаты исследования и их обсуждение. ИК спектроскопические исследования показали, что в продуктах вальцевания отсутствуют поглощения в областях 2445 и 2785 cm^{-1} , характеризующие иммониевые группы.

В спектрах присутствуют сильные поглощения в областях 1170 и 1725 см⁻¹, что свидетельствует о превращении бромиммониевых групп в формокси с участием влажности окружающей среды и бромидных под воздействием температуры [8].

Для образования 1 мол. % звеньев с формильными группами в условиях проведения вальцевания достаточно присутствия всего 0,01% Н₂О.

Известно, что даже незначительное присутствие формильных групп в макромолекулах обеспечивает сильные поглощения в их ИК спектрах в области $1720...1740 \text{ cm}^{-1}$.

Обнаруживается также сильное поглощение в области 1667 см⁻¹, соответствующее -CON= группам исходного амида. Последнее появляется вследствие разложения иммониевых групп. После откачки вальценатов под глубоким вакуумом в течение нескольких суток в спектрах продуктов поглощения в области 1667 см⁻¹ полностью исчезают.

Вышеизложенное позволяет представить процесс образования вальценатов в виде следующей схемы:

~ (CH₂-CR₁=CH-CH₂)_p~ +QBrOCR=N(CH₃)₂Br⁻
↓
$$(CH_2-CR_1=CH-CH_2)_n$$
~ (CH₂-CR₁Br-CHBr-CH₂)_m~ (CH₂-CR₁-CHBr-CH₂)₁~ $(CH_2-CR_1=CH-CH_2)_n$ ~ (CH₂-CR₁Br-CHBr-CH₂)_m~ (CH₂-CR₁-CHBr-CH₂)₁~ $(CH_2-CR_1=CH-CH_2)_n$ ~ (CH₂-CR₁Br-CHBr-CH₂)_m~ $(CH_2-CR_1-CHBr-CH_2)_n$ ~ $(CH_2-CR_1+CHBr-CH_2)_n$ ~ $(CH_2$

где R=H, CH₃; R₁=H, CH₃, Cl; $Q \le 0.01P$; $P = \pi + m + l = 100$.

Для полихлоропрена и полибутадиена - P=100, бутадиенстирольного каучука марки СКС-30 - P=86,7, бутадиенстирольного термоэластопласта марки ДСТ-30 - P=81,8, бутадиеннитрильного каучука марки СКН-26 - P=73,3, бутадиеннитрильного каучука марки СКН-40 - P=60,0 и т.д. и показывает количество диеновых звеньев в сегменте исходного полимера, состоящего из 100 звеньев. В схеме пропущены элементарные звенья сомономеров, не участвующие в реакциях.

Введение вальценатов в клеевые композиции взамен исходных каучуков приводит к значительному, а в некоторых случаях - резкому улучшению адгезионных свойств последних.

В табл. 1 и 2 приводятся конкретные примеры использования вальценатов в известных клеевых композициях.

Таблица 1 Состав известных и предлагаемых клеевых композиций

Состав клеевых композиций,	Известные клеи		Предлагаемые клеи	
масс. %	1	2	3	4
Вальценат на основе	-	-	12,3	-
полихлоропрена и комплекса				
диметил ацетамид-Br ₂				
Вальценат на основе эластомера	-	-	-	6,0
ГЭН-150(В) и комплекса				
пиперидилацетамид- Br ₂				
Полихлоропрен	9,1	-	-	-
Эластомер ГЭ Н -150(В)	-	5,7	-	-
Эпоксидная смола ЭД-20	2,3	63,9	-	63,9
Фенолформальдегидная смола	7,5	-	9,7	-
Хлорнаирит	6,8	-	4,1	-
Сополимер винилацетата с	1,0	_	-	-
винилпирролидоном (ВАП)				
Магния окись	0,7	-	1,0	-
Диаллилфталат	-	14,4	-	14,2
Асбест	-	6,4	-	6,3
Метафенилендиамин	-	9,6	-	9,6
Смесь растворителей	72,6	_	72,9	-

Таблица 2 Свойства известных и предлагаемых композиций

Прочностные характеристики клеевых композиций в различных химических средах		Известные клеи		Предлагаемые клеи	
		1	2	3	4
Предел	нерж. сталь-	-	193,0	-	271,3
прочности при	полистирол-	13,5	-	14,9	-
сдвиге,	стекло				
$\kappa\Gamma C/cM^2$,	полистирол-	15,5	-	16,7	-
материалы:	дерево				
•	полистирол-	11,2	-	13,4	-
	металл				
	вода 20°С*1	13,0	-	14,5	-
	воздух, 72ч	13,0	-	14,6	-
	-30°C*1				
Предел	10% NaOH,	-	145,5	-	187,4
прочности при	250ч, 20°C * *				
сдвиге,	уксусная				
$\kappa \Gamma C/c M^2$, после	кислота, 250 ч				
выдерживания	20°C	-	130,0		162,1
в следующих	90°C	-	110,0	-	141,8
средах:	Этилацетат				
•	250 ч, 20°C* ¹	-	140,0	-	259,3
	Ацетон, 250 ч,				
	20°C **	-	145,0	-	267,5

^{*} Материалы: полистирол - стекло

Представленный известный клей 1 предназначен для приклеивания полистирола к различным материалам: стеклу, металлу, дереву, окрашенной поверхности, штукатурке [10]. Модифицирование этого клея введением вальцената взамен полихлоропрена с исключением малодоступных и сравнительно дорогостоящих компонентов (сополимер ВАП, ЭД-20) из состава, как видно, заметно улучшает адгезионные качества клея. Повышается также его атмосферостойкость.

Модифицированный клей можно применять также для склеивания полимерных подошвенных материалов с натуральной и искусственной кожей,

^{**} Материалы: нерж. сталь - нерж. сталь

металлов, тканей в качестве связующего в изготовлении теплоизоляционных материалов.

Клей 2 предназначен для ремонта химического оборудования взамен сварки. Из данных табл. 2 можно заключить, что замена эластомера ГЭН - 150 (В) его вальценатом приводит к резкому улучшению как прочностных показателей клея, так и его химической стойкости в различных агрессивных средах.

Заменой метафенилендиамина отвердителем холодного отверждения УП-583 (режим отверждения 12...20 час при 25 °C) модифицированный клей заметно снижает прочностные показатели (предел прочности при сдвиге - 180,0 $\kappa\Gamma C$ / $c M^2$) и химстойкость (предел прочности при сдвиге после выдерживания при 20°C, 250 μ в 10 % NaOH - 127, 2 $\kappa\Gamma C$ / $c M^2$, в этилацетате - 130,0 $\kappa\Gamma C$ / $c M^2$ и т.д.). Клей сохраняет работоспособность в таких средах, как соляная кислота, щелочи, формальдегид, вода и различные органические растворители. Неработоспособен в уксусной кислоте.

Заключение. Совместное вальцевание ненасыщенных полимеров с комплексами дизамещенный амид карбоновой кислоты-бром приводит к гетерогенному взаимодействию последних с образованием модифицированных продуктов (вальценаты) с улучшенными адгезионными свойствами. Введение вальценатов в клеевые композиции взамен исходных каучуков приводит к значительному, а в некоторых случаях - резкому улучшению прочностных показателей последних.

Литература

- 1. **Берлин А.А.** Некоторые перспективы развития полимерных конструкционных материалов // Шестая Всероссийская Каргинская конференция "Полимеры 2014", 27 января 31 января 2014 г.- М., 2014. С. 31-36.
- 2. Патент на изобретение №2298568 bd.patent.su/2298000-2298999/pat/servl/servlet4b8c.html.
- 3. **Ташлыков И.С., Верес О.Г**. Элементный состав поверхности и объема резин на основе бутадиеннитрильных каучуков // Каучук и резина. 2007. N 1. C. 11-14.
- 4. **Гильманов Х.Х.** Модификация бутилкаучука // Каучук и резина. 2007. N 2. C. 15-16
- 5. О комплексах диметилформамида и диметилацетамида с бромом / В.А. Петросян, С.Г. Мирзаханян, Ш.А. Маркарян и др. // Ученые записки ЕГУ.- 1988.- Т. 169, N 3.- С. 113-117.
- 6. О строении комплекса N- метилпиролидона с бромом/ **В.А. Петросян, С.Г. Мирзаханян, Н.М. Бейлерян и др.** // Ученые записки ЕГУ. 1989. Т. 170, N 1.- С. 78 84.

- 7. **Петросян В.А**. Пластифицированные на вальцах продукты клеевого назначения // Тезисы докладов семинара совещания 5 "Потребители и производители реактивов. Ярмарка идеи". Ереван, 1991. С. 132 133.
- 8. **Петросян В.А., Григорян С.А., Мушегян А.В., Маркарян Ш.А.** Исследование бромирования бутадиеннитрильных каучуков в диметилформамиде // Арм.хим. ж. 1988. -T. 40, N 6. C. 357-362.
- 9. **Петросян В.А., Мирзаханян С.Г.** Бромированне бутадиенстирольных каучуков в присутствии диметилформамида // Арм. хим. ж.- 1989.- Т. 42, N8. С. 522-527.
- 10. **Давтян С.П., Аветисян А.С., Берлин А.А., Тоноян А.О.** Синтез и свойства дисперсно наполненных и интеркалированных полимерных нанокомпозитов // Обзорный Ж. по химии. –2000.- Т.3, N1. С. 3-57.

Поступила в редакцию 05.11.2014. Принята к опубликовамию 18.12.2014.

ՊՈԼԻՄԵՐԱՅԻՆ ԳԼԱՆՎԱԾՔՆԵՐ ՍՈՍՆՁԱՅԻՆ ԿՈՄՊՈԶԻՑԻԱՆԵՐԻ ՀԱՄԱՐ

Վ.Ա. Պետրոսյան

Պոլիմերային նյութերից մեքենաների դետալների վերականգման համատեղված մեխանասոսնձային մեթոդով ստացվող ադհեզիվ հատկություններով պոլիմերային կոմպոզիտները ամենամեծ պահանջարկ ունեցող նյութերից են, որոնք կիրառվում են տրանսպլանտալոգիայում, ստոմատոլոգիայում և այլ բնագավառներում։ Պոլիմերային կոմպոզիտներն ադհեզիոն հատկություններով օժտելու նպատակով աշխատանքում մոդիֆիկացման համար օգտագործվել է դիենային կաուչուկների համատեղ գլանման մեթոդը՝ ոչ մեծ քանակով (0,05...1,00 զանգ.%) ամիդ-բրոմ կոմպլեքսների ավելացմամբ։ Յույց է տրված, որ դիենային պոլիմերների և ամիդ-բրոմ կոմպլեքսների համատեղ պլաստիկացումը մեխանիկական մամլիչների վրա հանգեցնում է մասնակի մոդիֆիկացված արգասիքների՝ գլանվածքների առաջացման։

Առանցքային բառեր. գլանվածք, պոլիմերանոլոգիային փոխարկում, ադհեզիա, սոսնձային կոմպոզիցիաներ, ԻԿ- սպեկտրոսկոպիա։

POLYMER FORGE-ROLLS FOR ADHESIVE COMPOSITES

M.A. Petrosyan

The polymer composites with adhesive properties are most practically demanded materials for the combined mechano – adhesive method of restoring the machine parts from polymeric materials. For the purpose of polymeric composite modification by giving them stronger adhesive properties, a rolling-method (rolling of dyene-nibbers with additives - small amounts (0,05 ... 1,00%) advanced synthesized complexes of amid-bromine is applied. It is shown that the combined plasticization of dyene polymers with amid-bromine complexes on mechanical rollers leads to the formation of partially modified product - rolled products.

Keywords: rolled product, forge-roll, polymer-analogical, transformation, adhesion, adhesive composition, IR-spectroscopy.