УДК 543.42.062: 546.882

# СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ МОЛИБДОНИОБИЕВОЙ ГЕТЕРОПОЛИКИСЛОТЫ С КРАСИТЕЛЯМИ ТИАЗИНОВОГО РЯДА

## А.А. Карапетян

Институт общей и неорганической химии им. М.Г. Манвеляна НАН РА, г. Ереван, Армения

Изучено взаимодействие молибдониобиевой гетерополикислоты (МНК) с основными красителями тиазинового ряда в зависимости от кислотности среды, концентрации молибдат-иона и основного красителя. Показана зависимость состава образующихся различных по молибдену рядов (от 6 до 12) МНК как функции от кислотности среды и продолжительности выдержки растворов в процессе образования МНК. Установлено образование в системах трех- и пятизамещенных солей, с использованием которых разработаны высокочувствительные фотометрические методы определения ниобия (V).

**Ключевые слова:** ниобий (V), гетерополикислота, тиазиновые красители, комплексный ассоциат.

Введение. Число работ по изучению и применению гетерополикислот Сравнительно (ГПК) ограничено [1-6]. хорошо молибдофосфорнониобиевая кислота [1, 2] и соответствующие гетерополисини [3, 4]. Разработанные на их основе методы определения ниобия (V) не отличаются высокой чувствительностью [1-4]. Сама молибдониобиевая гетерополикислота (МНК) бесцветна и поэтому также не нашла применения в анализе, но описано определение ниобия (V) по окраске соответствующей гетерополисини [5]. Однако последняя неустойчива во времени [4] и весьма чувствительна к изменению концентрационных условий получения МНК в связи с образованием в системе соединений различных по молибдену рядов [6]. В ранее проведенных нами исследованиях впервые было показано, что эффективность реакции резко повышается, если МНК сочетать с катионами основных красителей (ОК) и определение проводить по окраске образующихся при этом комплексных ассоциатов (КА). Такой подход перспективен не только в смысле повышения чувствительности спектрофотометрического определения ниобия (V), но и позволяет установить образование КА МНК различного состава по внешней и внутренней координационной сфере в зависимости от кислотности проведения реакции, продолжительности выдержки растворов в процессе образования МНК и, особенно, природы ОК [7-10]. Составы этих КА

часто не объяснимы на основе существующих в настоящее время представлений химизма образования МНК и свойства МНК меньших рядов по молибдену [6]. Следовательно, сравнительное изучение взаимодействия МНК с ОК различной природы представляет определенный теоретический интерес и позволит сделать ценные выводы о химизме образования МНК в водных растворах при весьма малой концентрации ниобия (V), о природе образующихся на ее основе КА, а также даст возможность расширить ассортимент высокоэффективных реагентов на ниобий (V) и выяснить их сравнительные возможности.

Данное исследование посвящено иллюстрации этих возможностей на примере МНК с основными красителями тиазинового ряда: ди- и триметилтионины (ДМТ и ТМТ соответственно), тетраметилтионин (метиленовый голубой-МГ), толуидиновый голубой (ТГ) и метиленовый зеленый (МЗ).

# Экспериментальная часть и обсуждение результатов

Методика исследования. Методика исследования описана ранее в [7-10]. Сущность ее заключается в выделении соединения ОК-МНК в твердом виде и дальнейшем исследовании его ацетоновых растворов. Оптическую плотность (ОП) исследуемых ацетоновых растворов измеряли спектрофотометром, учитывая, что значение є красителя сохраняется и в комплексном ассоциате [11]. Одновременно проводили холостые опыты с целью установления степени образования изополимолибдатов ОК.

В ходе изучения преследовали цель:

- выявить условия количественного образования МНК в зависимости от кислотности  $(pH_K)$ ;
- выявить концентрационные условия количественного образования соединения МНК-ОК от концентраций молибдат-иона, ОК и кислотности образования МНК-ОК ( $pH_{KA}$ );
- установить внешне- и внутрисферные составы комплексного ассоциата и тем самым характеризовать ту отдельную из равновесных форм МНК, которая реакционноспособна по отношению к данному ОК;
- выявить наилучший чувствительный метод определения ниобия (V), для чего важными критериями могут быть интервал кислотности образования КА  $(pH_{KA})$ , концентрация красителя, коэффициент молярного погашения КА, интервал определения ниобия (V)  $(C_B, C_H, C_{min})$ , а также селективность реакции.

**Исследование условий образования МНК**. Оптимальные условия образования МНК устанавливались на основе данных измерения

светопоглощения продукта внешнесферного взаимодействия МНК с катионами ОК. При этом учитывали, что после образования в сравнительно менее кислых растворах МНК устойчива к дальнейшему повышению кислотности [5, 6]. Таким образом, повышая кислотность среды до экспериментально выбранного предельного значения, при котором не разлагается МНК и обеспечивается количественный выход соединений МНК-ОК, можно исключить образование изополимолибдатов ОК. При такой постоянной кислотности ( $pH_{KA}$ ) изучали интервал кислотности максимального образования МНК ( $pH_K$ ). Кислотность образования МНК варьировали в интервале 0,7...4,0. С целью одновременного установления  $pH_K$  и времени количественного образования МНК была изучена зависимость степени образования МНК при постоянных  $pH_{KA}$  и концентрации  $Na_2MoO_4$ , но при различной по времени выдержке растворов МНК (от 3 до 90 muh). Опыты проводили при комнатной температуре. Оптическая плотность параллельно поставленных контрольных опытов не превышала 0,030.

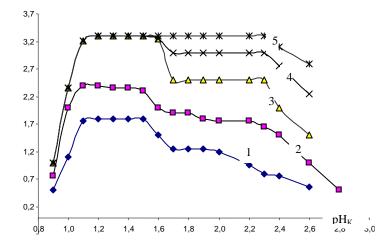



Рис. 1. Зависимости значений  $\varepsilon$  ацетоновых растворов соединения МНК- $M\Gamma$  от  $pH_K$  при различной выдержке растворов МНК;  $C_{Nb(V)}=1\cdot 10^{-5}$  М,  $C_{Mo(VI)}=2.95\cdot 10^{-3}$  М,  $C_{M\Gamma}=3.72\cdot 10^{-4}$  М,  $pH_{KA}0.5$ ,  $\tau$ , мин: 1-3, 2-6, 3-12, 4-20, 5-25...90

Результаты этих исследований, приведенные на рис. 1, говорят о том, что зависимости, полученные при постоянной выдержке растворов, характеризуются двумя областями кислотности максимального образования МНК. Это может быть объяснено образованием в системе МНК различных по молибдену рядов в зависимости от кислотности и времени выдержки растворов в процессе

образования МНК. Первая область наблюдается при  $pH_K1,1...1,6$  и практически совпадает с описанной в литературе [5], вторая – включает значения  $pH_K$ 1,7... 2,3. При выдержке растворов в течение 3...20 *мин* (кр. 1-4, рис. 1) ОП для второй из этих областей заметно ниже, чем для первой, т.е. скорость зависимости образования МНК В OT  $pH_K$  оказывается Количественноеобразование МНК при  $pH_K$  1,1...1,6 обеспечивается по истечении 12 мин, в то время как при  $pH_K1,7...2,3$  – только через 25 мин (кр. 5, рис. 1).С практической точки зрения, важно, что при выдержке растворов МНК-МГ ОП растворов максимальна и постоянна в широком интервале кислотности  $pH_{K}$  1,1...2,3. Это, по-видимому, объясняется одинаковой замещенностью во внешней сфере образовавшейся МНК при различной кислотности, независимо от внутрисферного состава. Аналогичные результаты получены и при использовании ТМТ, ДМТ и МЗ. Иные результаты получены при использовании ТГ. Соответствующие зависимости имеют одно плато при  $pH_K1,1...2,3$ . Количественное образование МНК, взаимодействующей с ТГ, обеспечивается по истечении 15 мин. Исходя из полученных данных, можно предположить, что в растворе имеются различные по молибдену ряды МНК, взаимодействующиес ОК.Исследуемыеацетоновые растворы при обладаютдовольно высокими значениями коэффициента молярного погашения  $(1.6-3.3)\cdot 10^5 \pi$  моль  $^{-1}$  см $^{-1}$ ). Следовательно, использование указанных ацетоновых растворов перспективно для резкого повышения чувствительности фотометрического определения ниобия.

В дальнейшем зависимость образования соединения МНК-ОК от различных факторов изучена при различных оптимальных  $pH_K$ : 1,2; 1,5 и 2,0.

**Условия образования соединения МНК-ОК.** При постоянной концентрации ниобия (V), молибдат-иона, ОК и постоянном  $pH_K$  изучали зависимость степени образования соединения МНК-ОК от  $pH_{KA}$ . Растворы МНК выдерживали в течение 30 *мин*, что обеспечивало максимальный выход в широком интервале  $pH_K$ .

Практически независимо от того, при каком оптимальном  $pH_K$  получена МНК, соединение МНК-МГ количественно образуется при  $pH_{KA}$  0,45...0,7, МНК-МЗ – при  $pH_{KA}$  0,30...0,75, а МНК-ТГ – при  $pH_{KA}$  0,45...0,85. В системе МНК-ТМТ зависимость  $\varepsilon$ - $pH_{KA}$  имеет два плато в диапазонах  $pH_{KA}$  0,05...0,25 и 0,35...0,90, что можно объяснить образованием и выделением в этих условиях соединений с различным составом во внешней сфере (кр. 1, рис. 2). ДМТ более склонен к образованию малорастворимых в воде изополимолибдатов (кр. 2′, рис. 2). В связи с этим соединение МНК-ДМТ образуется и существует в более кислых средах в узком интервале кислотности – 1,7..1,9 H по HNO<sub>3</sub> (кр. 2, рис. 2)

и далее не изучалась. Надо отметить, что при указанной продолжительности выдерживания ( $\tau \ge 25$  *мин*) растворов МНК характер кривой  $\epsilon$ - $pH_{KA}$  не зависит от  $pH_K$  и обусловливается лишь природой ОК.

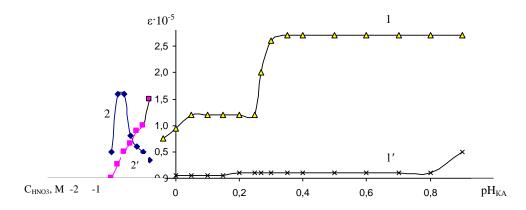



Рис. 2. Зависимости значений  $\varepsilon$  ацетоновых растворов соединений МНК-ТМТ и МНК-ДМТ (1, 2) и изополимолибдат-ионами (1', 2') от р $H_{KA}$  при различном оптимальном р $H_K$ .  $C_{Nb(V)} = 1 \cdot 10^{-5} M$ ,  $C_{Mo(VI)} = 2,95 \cdot 10^{-3} M$ ,  $C_{OK} \cdot 10^{4}$ , M:1, 1' - 3,27; 2, 2' - 2,74, OK: 1, 1' - TMT, 2, 2' - TMT

Были поставлены серии опытов по определению выхода соединений ОК с МНК и изополимолибдат-ионами в зависимости от концентрации молибдатиона и ОК. Показано, что оптимальные концентрации красителя и молибдатиона незначительно зависят от природы красителя и находятся в интервале  $(2,0...4,8)\cdot 10^{-3} Mu~(1,15...13,1)\cdot 10^{-4} M$ соответственно (табл.).

Состав соединений МНК-ОК. Соотношение ОК и МНК в изученных соединениях установлено методами изомолярных серий и сдвига равновесия. Опыты ставили при различной кислотности и суммарной концентрации основных компонентов (ОК и МНК). Результаты показали, что при использовании МГ и МЗ соотношение ОК:МНК = 3:1, а при использовании ТГ-соотношение ТГ:МНК = 5:1. Иные данные получены в системе ТМТ-МНК. Соотношение ТМТ:МНК в соединении, выделенном при  $pH_{KA}$  0,05...0,25, равно 2:1 и при  $pH_{KA}$  0,35...0,90 - 5:1 (табл.). Наличие двух плато на кривой зависимости  $\varepsilon$ - $pH_{KA}$  (кр.1, рис. 2) объясняется образованием и выделением в изучаемой системе двух соединений МНК-ТМТ с различным составом внешней сферы: МНК·2ТМТ и МНК·5ТМТ.

Таблица

Спектрофотометрическая характеристика соединений МНК·пОК

| Интервал определения $Nb(V)$ $n = 20$                                                         | Стіп<br>по 38 крит.           | 5,6<br>нг/мл                                 | 0,028<br>мкг/мл                             | 0,35<br>мкг/мл      | 0,02<br>мкг/мл                                                                           |                                         |
|-----------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|---------------------|------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                               | $C_{\rm H}$ Sr = 0,25         | 9,3<br>нг/мл                                 | 0,046<br>мкг/мл                             | 0,065<br>мкг/мл     | 0,03                                                                                     |                                         |
|                                                                                               | $C_{\mathbf{B}}$<br>Sr = 0,05 | 6,5<br>MK2/MJ                                | 2,77<br>мкг/мл                              | 1,86<br>мкг/мл      | 1,4<br>мкг/мл                                                                            |                                         |
| Вмнк-ок<br>л:моль <sup>-</sup><br><sup>1</sup> .см <sup>-1</sup>                              |                               | $3,3\cdot10^5$ $3,3\cdot10^5$ $3,3\cdot10^5$ | $1,6.10^5$ $1,6.10^5$ $1,6.10^5$            | 2,1.10 <sup>5</sup> | 2,7·10 <sup>3</sup><br>2,7·10 <sup>3</sup><br>2,7·10 <sup>3</sup><br>1,2·10 <sup>3</sup> | 1,6·10 <sup>5</sup>                     |
| Eok<br>T.MONE                                                                                 |                               | 11.104                                       | 5,3·104                                     | 4,1.104             | 5,4·104                                                                                  | 5,8.104                                 |
| Найдено в осадках количество (v), моль· $10^7$ v(OK) : v(Nb $^{\circ}$ ) : v(Mo $^{\circ}$ V) |                               | 3,0:1,0:6,0<br>3,0:1,0:8,0<br>3,0:1,0:8,0    | 3,0:1,0:8,0<br>3,0:1,0:10,0<br>3,0:1,0:10,0 | 5,0:1,0:12,0        | 5,0:1,0:6,0<br>5,0:1,0:8,0<br>5,0:1,0:8,0<br>2,0:1,0:6,0                                 |                                         |
| т<br>выдержки<br>МНК, мин                                                                     |                               | 12···15<br>20···90<br>25···90                | 20<br>2590<br>2590                          | 1560                | 1215<br>2090<br>2090<br>3090                                                             | 2090                                    |
| $\mathrm{pH}_{\mathrm{KA}}$                                                                   |                               | 0,450,7                                      | 0,300,75                                    | 0,400,85            | 0,350,90                                                                                 | 1,7-1,9 <i>М</i><br>по НNО <sub>3</sub> |
| рНк                                                                                           |                               | 1,11,6<br>1,11,6<br>1,72,3                   | 1,11,6<br>1,11,6<br>1,72,3                  | 1,12,3              | 1,11,6<br>1,11,6<br>1,62,3<br>1,12,3                                                     | 1,12,3                                  |
| Основной<br>краситель                                                                         |                               | MI                                           | M3                                          | IL                  | TMT                                                                                      | ДМТ                                     |

Практически на те же самые внешнесферные составы указывают  $\varepsilon_{\text{MHK-nOK}}/\varepsilon_{\text{OK}}$  (табл.), что одновременно свидетельствует о соотношения практически количественном выделении МНК-ОК соединений. Соотношения компонентов соединения МНК • пОК были установлены также анализом осадков на содержание Nb (V) и Mo (VI), выделенных при оптимальных условиях из растворов, содержащих 1·10<sup>-7</sup>моль Nb (V) [8, 12, 13]; кислотность среды и время выдержки растворов в процессе количественного образования варьировались при постоянных концентрациях остальных компонентов. При преследовали цель установить причину изменения количественного образования МНК в зависимости от кислотности среды  $(pH_K)$ . Результаты этих исследований показали, что в условиях первой области оптимальной кислотности ( $pH_K$  1,1...1,6) при выдержке растворов МНК в процессе ее образования в течение 12 мин в системах МНК МГ и МНК 3ТМТ происходит количественное образование МНК 6-го по молибдену ряда независимо от проявленной основности МНК (3 и 5 соответственно). В этих же концентрационных условиях и при более продолжительной выдержке растворов наблюдается переход МНК 6-го ряда в 8-й ( $\tau = 25...90 \text{ мин}$ ). В условиях второй области оптимальной кислотности ( $pH_K$  1,6...2,3) имеет место образование МНК 8-го ряда независимо от оптимального времени выдержки растворов в течение 25...90 мин. При снижении кислотности образования МНК ТМТ  $pH_{KA}$  0,15 образуется и количественно выделяется соединение МНК-2ТМТ 6-го по молибдену ряда ( $\tau = 30...90 \text{ мин}$ ). Применение МЗ приводит к стабилизации и выделению количественного образования МНК 8-го ряда, если растворы МНК в процессе ее образования выдерживаются в течение 20 мин, в этих же концентрационных условиях, но при более продолжительной выдержке наблюдается переход МНК 8-го ряда в МНК 10-го ряда ( $\tau = 25...90$  мин). В условиях второй области оптимальной кислотности имеет место образование МНК 10-го ряда независимо от времени выдержки растворов в интервале 25...90 мин. Применение ТГ приводит к стабилизации и выделению насыщенного 12-молибдониобата независимо от времени выдержки растворов МНК в течение 25...90 мин.

Образование МНК различных по молибдену рядов упоминается и в работе [6]. Однако зависимость этого образования от кислотности и продолжительности выдержки растворов МНК, свидетельствующая о стадийности образования МНК различных по молибдену серий, устанавливается впервые. Несомненный научный интерес представляет факт стабилизации соединений различных по молибдену серий (от 6 до 12) в зависимости от природы ОК. Каждая из этих форм МНК может стабилизироваться в виде малорастворимого в воде комплексного ассоциата вследствие ее избирательного взаимодействия с

ОК. Возможно, такому взаимодействию способствует и пространственная доступность функциональных групп ОК.

Использованные нами катионовые красители тиазинового ряда позволили выделить и использовать КА с 2...5 ассоциированными катионами красителей. Это привело к резкому повышению чувствительности реакций ( $\varepsilon = (1,6-3,3)\cdot 10^5 \pi\cdot monb^{-1}cm^{-1}$ ) (табл.), которая, по сравнению с так называемыми "желтыми" формами соответствующих ГПК, повышается более чем на два порядка. Достигнутая при этом чувствительность более чем на порядок повышает также известную наиболее чувствительную реакцию образования молибдофосфорнониобиевой гетерополисини ( $\varepsilon = 2,4\cdot 10^4 \pi\cdot monb^{-1}cm^{-1}$ ) [3].

Рассчитаны молярные коэффициенты погашения KA. По чувствительности определения ниобия (V) реагенты располагаются в убывающий ряд:  $M\Gamma > TMT > T\Gamma > M3 \geq \mathcal{I}MT$ .

Реакции образования соединений МНК·пОК, превышающие по чувствительности все существующие фотометрические реакции на ниобий (V) [13, 14], использованы для разработки высокочувствительных и простых в исполнении методов фотометрического определения ниобия (V). Как видно из таблицы, использование МНК·ЗМГ создает возможность определения более чем в 700 раз разнящихся количеств ниобия:  $\varepsilon_{656} = 3,3\cdot10^5 n\cdot моль^{-1} cm^{-1}$ ,  $C_{min} = 5,6$  n=10 n=10, n=

Заключение. Установлен оптимальный интервал кислотности (рН 1,1...2,3) для количественного образования молибдониобиевой гетерополикислоты (МНК). Последний не зависит от природы использованного основного красителя. Впервые показана зависимость состава образующихся различных по молибдену рядов (от 6 до 12) МНК как функции от кислотности среды, продолжительности выдержки растворов в процессе образования МНК и от природы ОК. Показано, что при использовании тиазиновых красителей значительно расширяется интервал определения ниобия (V), в 2...3 раза снижается нижняя граница его фотометрического определения, что является критерием для их применения в качестве высокоэффективных реагентов на ниобий.

### СПИСОК ЛИТЕРАТУРЫ

- 1. **Бабко А.К., Шкаравский Ю.Ф**. Изучение фосфорнониобиевомолибденового комплекса //Ж. неорган. хим. 1962. Т. 7, № 7.- С. 1565-1569.
- 2. **Norwitz G., Codell M.**Colorimetric determination of niobium by molybdenium blue method //Anal. Chem. -1954. -V. 26, № 7. -P. 1230-1234.
- 3. **Забоева М.И., Бондарева Т.И., Приволова Н.Н**. Об основности восстановленной фосфорнониобиевомолибденовой гетерополикислоты //Ж. аналит. хим. 1969.- Т. 14. № 8. С. 2147-2150.
- 4. **Забоева М.И., Бондарева Т.Н., Штейгер З.Г., Саврулина В.И.** Получение и свойства восстановленной фосфорнониобиевомолибденовой гетерополикислоты и ее солей //Ж. неорган. хим.- 1968.- Т. 13, № 1.- С. 127-131.
- 5. **Guyon J.C., Wallace G.W., Mellon M.G.**Spectrophotometric determination of niobium as redused 12-molybdotantalic acid // Anal. Chem. -1962. -V. 34, № 5. -P. 640-643.
- Забоева М.И., Сурин И.Т., Серкова А.В. Фотометрическое определение ниобия по образованию ниобиомолибденовой сини //Ж. аналит. хим.- 1973.- Т. 28. - С. 1736-1739.
- 7. **Мирзоян Ф.В., Тараян В.М., Карапетян А.А.** Метиленовый зеленый и толуидиновый голубой в качестве фотометрических реагентов на молибдониобиевую кислоту // Арм. хим. ж. 1985.- Т. 38, № 10.- С. 630-640.
- 8. **Карапетян А.А., Мирзоян Ф.В.** Изучение реакции молибдониобиевой гетерополикислоты с метиленовым голубым и ее использование для повышения чувствительности фотометрического определения ниобия // Арм. хим. ж. 1987. Т. 40, № 6.- С. 362-371.
- 9. **Мирзоян Ф.В., Карапетян А.А., Карапетян З.А.** Изучение и использование мультиплетных реакций молибдониоевой гетерополикислоты с ди- и триметилтионинами // Ж. аналит. хим. 1985. Т. 40, № 9.- С. 1649-1655.
- 10. **Мирзоян Ф.В., Карапетян А.А., Оганян Н.А., Багдасарян Л.С.** Проявление более трех основности 12-молибдофосфорной гетерополикислоты в ее реакции с основным красителем фуксином // Хим. ж. Армении. 2011. Т. 4. С.484-493.
- 11. **Шенцзе Сюй.** Мультиплетные комплексы гетерополикислот с основными красителями и их применение в фотометрическом анализе // Феньси Хуасюэ.- КНР,1983.- Т. 11, № 4.- С. 312-319.
- 12. Зайчикова Л.Б. Применение тиомочевины при колориметрическом определении молибдена // Зав. лаб.- 1949.- Т. 15, №9.- С.1025-1027.
- 13. **Ганаго Л.И., Бухтеева Л.Н.** Изучение условий экстракционно-фотометрического определения ниобия в виде триоксифлуороната //Ж. аналит. хим.- 1979.- Т. 34, №11.- С.2186-2191.
- 14. **Agnihotri N. and Agnihotri R.** Extractive Spectrophotometric Determination of Niobium (V) Using 3-Hydroxy-2-(4'-Methoxyphenyl)-4-Oxo-4H-l-Benzopyran as a Complexing Agent // The Open Analytical Chemistry Journal. 2012. V. 6. -P. 39-44.

Поступила в редакцию 12.03.2014. Принята к опубликованию 11.07.2014.

# ՄՈԼԻԲԴԵՆԱՆԻՈԲԻՈՒՄԱԿԱՆ ՀԵՏԵՐՈՊՈԼԻԹԹՎԻ ԵՎ ԹԻԱԶԻՆԱՅԻՆ ՇԱՐՔԻ ՆԵՐԿԱՆՅՈՒԹԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅԱՆ ՀԱՄԵՄԱՏԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

### Ա.Ա. Կարապետյան

Ուսումնասիրվել են թիազինային շարքի ներկանյութերի հետ մոլիբդենանիոբիումական հետերոպոլիթթվի (ՄՆԹ) առաջացրած դժվարալուծ իռնական ասոցիատների գոյացման օպտիմալ պայմանները՝ կախված միջավայրի թթվայնությունից, ՄՆԹ-ի առաջացման ժամանակամիջոցից, ներկանյութի բնույթից և կոնցենտրացիայից։ Հաստատվել է, որ կախված միջավայրի թթվությունից և ՄՆԹ-ի գոյացման ժամանակամիջոցից՝ առաջանում են ըստ մոլիբդենի տարբեր շարքի (6-ից 12-րդ) եռատեղակալված և հնգատեղակալված իռնական ասոցիատներ, որոնց կիրառումը թույլ է տալիս խիստ բարձրացնել նիոբիումի որոշման զգայնությունը։

**Առանցքային բառեր.** նիոբիում (V), հետերոպոլիթթու, թիազինային ներկանյութեր, կոմպլեքսային ասոցիատ։

# A COMPARATIVE INVESTIGATION OF THE INTERACTION OF MOLYBDONIOBIC HETEROPOLYACID WITH THIAZIN DYES

# A.A. Karapetyan

The interaction of molybdoniobic heteropolyacid (MNA) with the main dyes of the thiazine series depending on the medium acidity, the concentration of the molybdate-ion and the main dye is investigated. The dependence of the composition formed of different by molybdenum series (6...12) of MNA as a function on the medium acidity and the period of the solution endurance in the process of the MNA formation is shown. The formation of three- and five replaced salts in the systems by using which, the methods of photometric determination of Niobium (V) distinguished by high sensitivity is established.

**Keywords:** niobium (V), heteropolyacid, thiazine dyes, complex associate.