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LEAST SQUARE APPROXIMATIONS ON FINITE SETS OF LINES AS
APPLIED TO THE SYNTHESIS OF ADJUSTABLE ROBOTIC
MECHANISMS
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The problem of determining the special lines of a moving body which in m alternating
sets of its given positions deviate least, in a least-square sense, from the coaxial line
congruences generated by the moving axes of CC dyads with the common fixed axis of
rotation is considered. The sought-for approximation is one which minimizes two sums of the
squared angular and linear deviations of such lines from the approximating line congruences
associated with the CC dyads to be synthesized. Two theorems describing geometrically the
necessary conditions for the best least-square approximation of the given m line-position sets
by coaxial circular cones and line congruences are formulated. The loci of the special lines
under consideration are studied, and a method for their determination is proposed. The theory
and method presented in the paper can be readily applied to the synthesis of adjustable parallel
robotic mechanisms based on CCC chains (modules) with the lockable middle joints which
serve for adjusting the angle and distance between the moving and fixed axes of rotation to
realize multiple kinematic tasks. The synthesis of CCC chain is decomposed into two simpler
subproblems: a) synthesis of its spherical indicatrix RRR with the lockable middle joint to
determine directions of the moving and fixed axes of rotation and m values of their adjustable
twist angle, b) synthesis of CCC chain with the known directions of the rotation axes to
determine their locations in the corresponding coordinate systems and m values of the
adjustable distance between them.

Keywords: coaxial line congruences, least-square approximation, angular deviation,
CC dyad, robotic mechanism.

Introduction. The theory of the kinematic synthesis for Cylindric-Cylindric
(CC) dyads to exactly match 3, 4, 5 design positions of the output link has been
developed in [1]. In [2], we have considered the same problem for an arbitrary number
of given positions, seeking to determine the special CC dyads which approximate, in a
least square sense, all given positions. In [3], a method has been proposed to
synthesize CC dyads approximating best the finite sets of ordered lines, in a
Chebishev sense.

The present paper is an extension of [2] where a single set of design positions
has been considered only. Here we discuss the general case of multiple sets of the
given positions to be approximated. The problem we set ourselves in this paper is to
determine the special lines in moving body e which in m>1 given sets of its positions
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best approximate coaxial line congruences generated by the moving axis q of a CCC
chain with the lockable middle cylindric joint adjusting the twist angle y and distance
d between the moving and fixed axes ¢ and Q (Fig. 1). This joint is locked in all
operation modes of the mechanism by a physical stopper attached to the joint itself.
The problem under consideration is directly connected with the synthesis of
multimode parallel robotic mechanisms built on the basis of CCC modules with the
lockable middle joints shown in Fig.1. Such mechanisms can be used to design
reconfigurable manufacturing systems with a short changeover time since they need
fewer actuators to realize multiple kinematic tasks and there is no need to disassemble
the mechanism in the process of its reconfiguration for a new task [4].

/T q

Q
X
Fig.1. CCC chain with the lockable middle joint

For each pair of fixed values y; and dj (j=1, 2,..., m) of y and d, the three link
CCC chain with its locked middle joint turns into a CC dyad the axis q of which
generates a line congruence K; called in [3] “CC congruence”. In what follows we will
use this term. For m values of j, we have a set of coaxial line congruences K =

= {kj};nzl. In other words, we seek to determine a set of CC dyads with the common

axis Q which are different from each other by their adjustable parameters y and d.

The paper is organized as follows. First we consider a simpler problem of
approximating the given position sets of a line q in e by coaxial CC congruences
which, as will be shown below, can be solved in a closed form. Then, based on the
solution of this problem, the special lines of e are determined which are closest, in a
least square sense, to the associated sets of approximating coaxial line congruences in
the given m positions- sets of e.

Least square approximations of the given line-position sets by coaxial CC
congruences. Body e is given in the m sets of finitely separated positions ej; (j =
=1.2,..,m; i=12,..,N;) relative to a coinciding fixed body E with N; positions
each. Coordinate systems 0xyz and OXYZ are rigidly attached to e and E respectively
(Fig. 2). Here we study the following problem: given a line q in e determine a set K
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of m CC congruences K = {kj};,n_l with the common central axis Q" which is as close

as possible to all the m sets of positions {q ji}IL,V:jl (G =1,2,..,m)of g, in a sense to be
specified.

This problem would have been separable into m problems of approximating a
single line-position set by a CC line congruence considered in [2]. However, a
common central axis Q for all line congruences K; is required which makes these
problems interconnected. To solve the problem we should define first the deviation
and the norm of the sought — for approximation.

z

Q
Fig.2. Angular and distance deviations between moving line g and CC congruence k;

To measure the distance of the given line set to coaxial CC congruences we,
will use the so called “dual modulus of deviation” defined in [3]. Since the relative
position of two lines depends upon their relative angle and distance, we have an
angular modulus and a linear modulus. Thus, the dual modulus will be composed of
two components: the angular modulus and the distance modulus.

For the angular deviation §j; of the line q;; associated with the position ej; of

and j-th CC congruence K; we have

8ji = vji — V- (1)
For the distance deviation Aj; we have
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Here y; and d; are the twist angle and distance of the j-th CC congruence K;
while y;; and dj; are those of a moving line q in its i-th position of the j-th given
position set of e relative to the central axis Q of K;.

We will define lines q and Qin systemsoxyz and OXYZ by their canonical
equations

X-Xp _y-yp _ z X-Xp _Y-Yp _ Z

Ax - dy _E’ Qx N Qy _a’
where B and A are the points of intersection of  and Q with the coordinate planes oxy
and OXY respectively, qy, g, q, and Qy, Qy, @ are the direction cosines of line g in
oxyz and line Q in OXYZ respectively.
With the assumed denotations the angle y;; between the line gj; of the given j-th
line set and axis Q can be determined from the expression
cosyji = qjixQx + qjiyQy + q;izQz » (3)
where qjix, qjiy, qjiz denote direction cosines of q;; with respect to the fixed
coordinate axes and can be expressed in gy, gy, g, by means of the given 3x3 rotation
matrix Tj;:
t t
[9ix Qjiv- Qjiz] = Tiilaw a0y, 92] - “4)
Angle yj; is determined from (3) by an inverse trigonometric function of the
unknown direction parameters Qy, @y, @, that brings to a highly nonlinear expression
of the angular deviation (1). Therefore, we follow the well-known approach of the
approximate synthesis theory [5] and replace (1) by an algebraic deviation function:
Ag;,= cosyji — cosy; = qjixQx + qjiyQy + qizQz — cosyj, ®)
where unknown Qy, Qy, Q are subject to the condition Q2 + QZ + Q2% = 1.
To estimate the “closeness” of the given line sets{q ji}i\l:jl (G =1,2,..,m) to the

sought-for coaxial CC congruences K; (j = 1,2,...,m), we use by analogy with [2] the
sums of squared deviations (5) and (2) written for all the given position-sets

{eji iv=’1 (G =1,2,..,m). Accordingly, the sought-for CC congruence setK* =
= {K}*}:n:l will be determined from the necessary conditions for a minimum of the

following sums:

m Nj
S, = Z z Az, (6)
==
m J
;=) ) M ™)
==

As mentioned above, the synthesis of the CCCmechanism in Fig.1 requires to
find m CC dyads with the common fixed axis Q of their pivotal cylindric joints and
different (adjustable) twist angles y; and distances d; between the moving axes 0 and
fixed axis Q. It can be easily shown that associated with each of these dyads, there is a
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spherical indicatrix — a conditional RR dyad with the intersecting axes of rotation
which will reproduce the same angular relationships and relative rotations as in the CC
dyad under consideration [2,3]. Therefore, the formulated above problem of synthesis
of CCC chain can be decomposed into 2 simpler subproblems: a) synthesis of its
spherical indicatrix to determinate the twist angles y; (j = 1,2, ..., m) and directions of
Q and q in systems XYZ and xyz respectively, b) synthesis of coaxial CC dyad with
the known directions of axes Q and q to determine their locations in corresponding
coordinate systems and distances d; (j = 1,2, ..., m).

Z

&;
0/ Y
e q
5 — 5. 7
ji
X
\/\ q
A\ J
X B E
G
Q

Fig.3. Spherical indicatrix of CCC chain for the j-th position-set

If we deal now with the problem (a) we can think of an RRR chain with all
three revolute axes intersecting at the fixed point 0' of the spherical displacements
where the origin can be placed and therefore all d; = 0,d;; = 0,Xo,, =Yo;, =Zo;, =
=0 (Fig.3). Since we are now concerned only with the angular part of the
displacement, the m sets of given positions qj; turn into m bundles of lines to be
approximated by m coaxial second order circular cones C]-E (j =1,2,...,m) embedded
in E. The theory of the loci associated with the least square approximations of a
spherical motion given by a single set of displacements has been developed in [5,6].
Most of the results presented in these references are valid also for m>1.
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Defining linesq and Q in the new spherical coordinate systems O'xyz and
0'XYZ respectively by their points [(x;,y;,1) and L(X;,Y;,1), we can represent
expression (5) for A;; in the more convenient polynomial form:

Aqﬂ: Xy X, + Y, Y + 7y, + Hj, ®)
where Hj = —7; -7 cosy; is a constant depending only on the unknown design
parameters, while X, Lo Ylﬁ and Z 1; are determined by the same linear transformation
formula (4):

t
[lei' Ylji' lei] = Tfi[xll Vi, 1]
For each line q (point [(x;, ¥4, 1)) given in e, we should find the set of coaxial
circular cones C]-E(j =1,2,...,m) approximating best the corresponding sets of the

prescribed line-positions{qﬁ}Iivzj1 (G =12,..,m). We determine this set from the

necessary conditions for a minimum of (6):

aSl/aXL = 0, aSl/aYL = 0, aSl/aHj = 0 (] = 1,2,...,m). (9)
Substituting (8) in (6) and denoting for brevity X, i = Xji, Ylﬁ =Y, Z i = Zj;,

we can reduce conditions (9) to the following system of (2+m) linear equations in
X, Y, and H; (j = 1,2, ..., m) presented below in a matrix form:

MEpF = FF, (10)
where
i m Nj m Nj N, N ]
2
DXXE DX DXy DX
j=1 =l j=1 =l i=1 i=1
m Nj m Nj N, Ny,
2
DX DY Yoo e DY
j=1 i=1 j=1 i=1 i=1 i=1
Nl Nl
M E = Xli ZY“ Nl “ee O R
i=1 i=1
N, N,
X2i ZYli 0 .. 0
i=1 i=1 : . .
N N
m m 0 0
Xmi Ymi
L i=1 i=1 n
PE = [XL'YL'Hlﬂ '--:Hm]ts
m Nj m Nj Ny Npm t
FE:— ZZX‘”ZJ“ZZYJLZ]“ Zli,...,ZZmi .
j=1i=1 j=1i=1 i=1 i=1

We present the solution of (10) in the vector form by means of Cramer’s rule:
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1
X, nﬂ1ﬁ,m,Hm)::B(le%”DHﬂ"”DHm) (11)

where Dy, Dy, Dy, ..., Dy, are the (2+m)-th order determinants defined from (10) by
Cramer’s rule.

Equation (11) determines the sought-for set of m coaxial circular cones {C]E }
approximating, in the least square sense, the given m line-positionsets
{q ﬂ} (j = 1,2,...,m) in spherical motion of e. Solution (11) of system (10) exists
and is umquely determined unless its coefficient matrix is singular (D=0). In [6], it has
been shown that D>0 for all points of the plane z=1 in e if the numbers of the given
positions Nj>4. Knowing the coordinates X;, Y;, 1 of point L, we compute the
direction cosines Qy, Qy, @ of the determined common axis L.

The cone angles y; of approximating coaxial cones C]E are determined from the
expression of H;:

Y = arccos|Hj|/Fl (G =12,..,m).

Now we proceed to the solution of problem (b): determination of the position of
Q in OXYZ and distances d]- (G =1,2,...,m) of coaxial CC congruences K; for the
known direction (Qx, Qy, @z) of Q and angles y; (j = 1,2, ...,m). The distances dj;
between lines q; and axis Q can be written as:

Xa=Xp, Ya—Yo, —Z,
4jix djiy qjiz |, (12)
Qx Qv Qz

where qjix, qjiv. qjiz are computed by (4), while XB].l.,YBﬁ, ZBﬁ can be

_ 1
Jt sinyj;

determined by using the linear transformation

[XB,',"YB]'VZB”] [Xoﬂ Yoﬂ ZO]L] +T xB:szO]

Substituting in (2) expression (12) for dj;, after some transformations, we
present the distance deviation Aj; in the form of a linear function with respect to the
unknown design parameters X4, Yy, d;(j = 1,2, ...,m):

Aji=dj; —dj = f1jiXa + f2)i¥a — d; + F, (13)
where
fiji = Smy (q]LYQZ jSzQY) faji = pro ( qjixQz + qleQX)
i = sinyj; [QX (q” X RB],) + QY (qjl X RBﬂ) + QZ (CI]t X RB”) ]

The sought-for position parameters will be determined from the necessary
conditions for a minimum of (7):
0S1/0X, =0, 98S;/0Y, =0, 0S;/0H;=0(j =12,..,m).
In view of (13), conditions (14) can be reduced to the following system of
(2+m) linear equations:
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Nj N,

m m Np, m Nj
Z f12ji ZZ flji fz;i _z fl TR _Z flmi XAW ZZ fljiFji
i i=1 =1 i
Nm

j=1 =1 j=1 =1 i=1

Nj N,

szljifzji z f22ji Zlei e T fzmi YA szzjiFji
et £ i=1

=1 i= j=1i=1 i=1 i=1 j=1

’11 d Nl
_Z flli - f12i N1 0 1 z f1i

i=1 i=1 i=1

=4

i

M

. (14)

M=

N, N,": : : :
_Z 1:lmi _z 1:2mi 0 Nm de z fmi
L i=1 i=1

i=1

(=]
=

It can be easily shown that the coefficient (ieterminant_ of system _(14) is
always positive [5] and the system has a unique solution. It follows then that for any

given line ¢ in e systems (10) and (14) determine a unique set {Kj}j,nzlof CC
congruences with the common axis Q which approximate m given sets of line-
positions {q ﬁ}?lzjl (j =1,2,...,m). Equations (10) and (14) establish correspondence
between lines in € and the central axes of coaxial CC congruences{KjE };n:l in E.

The same arguments are also true for the inverted motion when e becomes the
fixed body and E moves so as to maintain the same relative positions as in the original
motion given by the initial data on the m prescribed position-sets. Here we should find
such CC congruence set {k]-e};n_l in e which will approximate the m alternating sets of
the inverted positions of a line Q of E. First we solve the directional part of the
problem (subproblem (a)) for the spherical indicatrix of CCC chain in the inverse

. . . . em
motion. The direction parameters of the common axis q of {k]- }j—l and constants

h; j = 1,2, ...,m) are determined from the stationary conditions of the sum (6):
0S1/0x; =0, 8S;/0y, =0, 3S;/0h; =0( =1.2,..,m). (15)

Then we compute the direction parameters qy, q,, g, and cone angles
y(G=1,2,...,m) for approximating coaxial cones C]-Eto determine the position of ( in
oxyz and distances d; (j = 1,2, ...,m) fork; by using the stationary conditions of the
sum (7):

0S;/0xg =0, 0S,/dyg =0, 3S,/0d; =0 (j =12,..,m). (16)

Equations (15) and (16) yield two systems of linear equations similar to (10)
and (14) which define a unique approximating CC congruence set {kf} for any line Q
of E in its inverse motion.

Lines of e deviating least from the associated approximating coaxial CC
congruences. In the foregoing, we have established one to one correspondence
between the lines in e and the central axes Q of the coaxial CC congruences
approximating alternating position-sets of these lines in given spatial displacements of
e. Now we proceed to the main subject of this study: determination of those special
lines in e which remain as close as possible to their associated approximating coaxial
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CC congruence sets {KJE } in all m given position sets of e. As already mentioned, the
directions of lines q and Q are determined independently of their positionsin the
moving and fixed coordinate systems.

Algebraic deviation A, given by (5) is a function of (5+m) design variables:
Xp, Y, x1, Y1, vj = 1,2, ..., m). Therefore, the direction parameters of lines g and Q
for which the sum (6) attains a minimum (extremum) should satisfy the conditions.

0S,/0X;, =0, 98§,/0Y, =0, 0S;/0x; =0, 0S;/0y; =0,
0S1/0H; =0 ( =1,2,..,m). (17)

The system (17) combines stationary conditions (9) and (15) respectively for
the original and inverse spherical motions of e and E. This brings to the assertion
presented as the following theorem:

Theorem 1. In order for a moving line-fixed axis pair (g*, Q*) intersecting at
point 0/ (Fig.3) to cause the sum (6) to be a minimum (extremum) it is necessary that:
1) Q*be the axis of the coaxial cones C]-E (G =1,2,...,m) approximating m sets

(bundles) of positions {q;}l’l (G =12,..,m) of line g in m given sets of

spherical displacements of e with respect to E;
2) q* be the axis of the coaxial cones C je (j =1,2,...,m) approximating m sets
(bundles) of inverted positions {Q]*l}iv_J L (G =1,2,...,m) of Q" with respect to e.

Theorem 1 is the extension of the similar theorem on the interrelation of
directions of lines g and Q in spherical motion of e for a single set of given positions
(m=1) [6] to the general case of multiple position-sets (m>1).

For the known directions of g and Q the linear (distance) deviations Aj; given
by (13) and their squired sum (7) are functions of (5+m) variables: X,, Y4, x5, V5,
d]- (j = 1,2,...,m). Therefore, the following conditions are necessary for a minimum
(extremum) of (7):

0S,/0X, =0, 0S,/0Y, =0, 0S,/0xg =0, 0S,/0yg =0,
0S,/0d; =0( =12,..,m). (18)

System (18) unites the stationary conditions (15) and (16) for S, written for
the original and inverse relative motions of e and E. The joint analysis of equations
(17) and (18) together with the assertion of Theorem 1 permitsto present the necessary
conditions for a pair of lines q and Q to minimize the sum (17) and (18) in the form of
the following theorem.

Theorem 2. In order for a moving line-fixed axis pair (g*, Q) to cause the
sum (6) and (7) to be a minimum (extremum) it is necessary that:

1) Q" be the central axis of m coaxial CC congruenses {K]E }:n;l approximating m

position-sets {q ji}i _11 (j = 1,2,...,m) in the given m sets of spatial displacements

of e relative to E;
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2) q* be the central axis of m coaxial CC congmences{kf};_n_1 approximating the m

. . N; . V. . .
sets of the inverted positions {Q ﬁ}i _]1 (G=12,..,m) of Q" in the inverse motion

of E relative to e.

Equation (17) for determining the directions of ¢ and Q can be reduced to a set
of two 9-th order algebraic equations in xg and yg. For the case when we are given a
single set of positions {ei}?lzl (m = 1) it has been shown that this set may have at
most 33 real solutions and therefore it can define up to 33 coupled directions for ¢ and
Q corresponding to the extremums of the sum (6). A simple analysis has shown that
this property does not depend on the number of the given position-sets. With the
known directions of g and Q, system (18) can be transformed into a system of (4+m)
linear equations which uniquely determines the positions of sought-for lines g and Q
in systems Xyz and XYZ respectively, as well as the adjustable values d;(j=1,2, ..., m)
of distance d between them. The computational part of this study and the numerical
results of synthesis of the adjustable robotic mechanisms made of CCC modules
considered above will be presented in a companion paper of the author.

Conclusion. We have presented a study of special lines in a moving body
which in the m alternating sets of its ordered positions deviate least, in a least-square
sense, from the coaxial line congruences generated by the moving axes of CCC chain
with the middle joints locked in all operation modes of the mechanism serving for
adjusting the distance and twist angle between the moving axis ¢ and fixed axis Q in
accordance with the changing kinematic tasks performed by the mechanism. The
results presented here can be regarded as an extension of the theory developed in [2]
for a single set of given positions to the general case of multiple sets. The results of
this study can be readily applied for building reconfigurable parallel mechanisms
made of CCC modules.
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LUNUUNRUUBPL UNSUPUNRULErR SUGCP EPRUUNN PUUNRE3NRLLELNRU®
uwurqeudnr4n uuthMnrL3ushnL UcluLh2ULENP UbLER2RNPU UhrUnUUL
cuuvur

Sni.L. Uwpqujwis

“Fhunwpyynd | inbnuowpdynn dwpduh wjuwhup hwnndy gdbph npnadwt fuunhpp,
npnup Upw  bwhwtdwd nhppbph wpdwd  hwenpnwlwunygnitbpnd wdbuwphst Gu
sbnnud  hwdwnwugp 949 (quuwiht-quuwihu) nhwnubph  owpdnit wnwugpubiph
suwynpwd  hwdwnwugp qdwiht  Ynugpniblghwttiphg'  tjwquagnyt  pwnwlnwhubiph
hdwuwnyg: FHowplydnn dnunwpynwdubpp buqupynd Bu npnubh gdbph dnunwplynn
Ynugpnibughwubiphg wulyniiwhtu b géwihu stnnuiubiph pwnwlynwhubiph Gpyne gnidwpubipp
nhpptph wpdwd pnnp pwqdnipgnitubph nbgpnud: Auwybpwytb) £ Gpyne pbnpbd, npnup
Gpypwswihnpbu uwpwgpnud Bu ubbphly b nwpwdwlwu swpdnuiubp Yuwwnwpnn dwpduht
wwwnlwunn gdh nhpptiph wpdwd m hwonpnwlwunyeniuubph  hwdwwwmnwuluwlwpwp
hwdwnwugp 2pgwuwhu Ynubipny L hwdwnwugp qdwiht Ynugpnibughwubpny jwlwagnyu
pwnwynwwiht dnunwpldwt wuhpwdbon  wwydwuubpp: <Enwgnindbp Bu nhunwplyynn
hwwnniy gétiph Gpypwswihwlywl wmbnbpp, wnwowpyyby Bu nputg npnudwu ulygpniupubp L
wignphpd: <nnjwénd qupgugynn wbuniginiup Ywpnn £ wudhswlwunpbu Yhpwndby
Ywpgwynpynn gniqwhbn dwuhwynywghnt  dGjuwthgdubph uhupbgnd, npnug  hhdpnud
pulwd bu 999 (quuitwiht-qutiwht-qutwht) whwh  Yhubdwinhywywu onpwutp’
Swipwihtu guwuwhtu gnygbph swpdnit b wuswnd wnwugputiph dhole hbnwdnpnygyniup L
wuynit pun yhubdwnplwlywy wnwewnpwuph thnthnfudwt pniiyghw Yunwpnn dheht
qlutwht gnygny: Hinwplydnn 3% onpwih uptptiqh fuinhpp wpnhdnud £ Giphne wytih
wuwpq  Gupwftnpputph.  w)  Qupquynpan dhohti wpnnwlwt - gnygny - upbiphly
hunhlywwphpup (Wunnwlwiu-wynnwlwiu-wyaonwlwu (MMN)) uhuebq’ wnndwu 2wpdniu
wlownd wnwugpubph nnnyeinituph bW Ywpgquwdnpynn  dhownwugpwiht  wuljjwu m
wpdbtipubiph npnodwdp, p) wunndwt wnwugptbph hwynuh ninnnugegniiibpny 999 9newih
uhtpbq’ hwdwwwnwufuwu Ynnpnhtwnwht hwdwlwpgbpnd wyn wnwugpubph nhppbph
b npwtg dhol yupguwinpynn hbnwdnpnyewt m wpdbpubph npnadwdp:

Unwigpuyhty pwnkp. ninhnubph hwdwnwugp Ynugpnibughwubp, pwnwynwwiht
dnunwnynwiubp, wulynuwht sknnud, 99 nhwn, dwuhwnywghnt dbfuwuhqu:
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KBAJAPATHYECKHUE ITPUBJINKEHUSI HA KOHEYHbBIX MHOKECTBAX
JUHWUI IPUMEHHUTEJIBHO K CUHTE3Y PEI'YJIUPYEMBIX
MAHUITYJAIONOHHBIX MEXAHU3MOB

I0.JI. Capxucan

PaccmaTpuBaercs 3amava ompeneneHus] CHEeNHalTbHBIX JUHWHA IBHKYIIETOCs Tena,
KOTOpBIE HAaWMEHEe OTKIOHSIOTCS B CMBICIIE HAaWMEHBIINX KBaJApPaToB OT COOCHBIX
KOHIPY3HIMI NPSAMBIX, TEHEPUPYEMbIX MOABIKHBIMU ocsimu LIL] anan ¢ obuieii HemoaBruxHON
OCbI0, B 33/IaHHBIX HA0OPAX MMOJIOKEHHUH Tesa. FickoMoe nmpuOIMKeHrne MUHUMH3UPYET CyMMbI
KBAJ[paTOB YIJIOBBIX M JIMHEHHBIX OTKJIOHEHUH YKa3aHHBIX MPSAMBIX OT alNpOKCHMHUPYHOIINX
JMHEHHBIX  KOHIPY?HLMH, acCOUMUPOBAaHHBIX C  cuHTe3upyembiMu LIl nuagamu.
ChopmynupoBaHbl JBE TEOPEMBbl, I'€OMETPUYECKH OINUCHIBAIOIINE HEOOXOAMMBIE YCIIOBHS
HAMJIY4IIero KBaJApaTu4ecKoro NpuOIMKEeHUs 3aJaHHBIX M [10CJIeI0BATEIbHOCTEH MOI0KEHHH
JIMHUU Tella, COBEPLIAIONICro c(epuvecKue M IMPOCTPAHCTBEHHbBIC IBIIKCHUS MOCPEICTBOM
COOCTBEHHO  COOCHBIX KPYIOBBIX KOHYCOB M  COOCHBIX JIMHCHHBIX  KOHTPYIHIUI
COOTBETCTBEHHO. lccienoBaHbl IreOMETpUYECKHE MECTa YKa3aHHBIX CHEIUAJIbHBIX JIMHUMH,
MPeJI0KEHbl TEOPEeTHUECKUE MPUHIUIBI M alTOPUTM HUX ompeaeneHus. Pa3BuBaemast 3aech
TEOpHs MOXET OBbITh HEMOCPEJCTBCHHO MPUMEHEHA B CHHTE3€ PETYIMPYEMbIX MapauieIbHbIX
MaHUITYJSIIHOHHBIX MEXaHM3MOB, IIOCTPOCHHBIX Ha Oasze I[II memeil ¢ OJOKMpyeMBIMH
CPEIMHHBIMM TapaMH, CIYKAIlUMM [yl TEPeHANaJKH YyIria M pPacCTOSHUS MEXKAY OCAMHU
OMOPHON ¥ TOABMKHOW IIMJIMHAPHUYECKHX TMap B COOTBETCTBHM C H3MEHEHUSIMH
KHHEMaTH4YeCKoro 3aJaHus. 3axada cuHTe3a paccmartpuBaemoir LIl mernwm pazOuBaercst Ha
nBe Oosee TPOCThle IMOJ3ajaun: a) cuHTe3 ee cdepudeckoid uHmuKarpucsl BBB ¢
OmokupyeMoit  (perynupyromieil) CpeAMHHOW BpamlaTelIbHOW TMapodl ¢  ompeleleHueM
HanpaBJIeHUH oceil NOJABMKHOM UM HEMOJBM)KHOM BpalaTeNbHBIX MHap M M 3HaYEHHU
peryaupyemoro yria mexay Humu; 0) cuHres L[ menu mpu M3BECTHBIX HANpPaBICHHUIX
YKa3aHHBIX OCEH BPAIICHHs C ONpE/eIEHHEM UX IOJO0KEHUH B COOTBETCTBYIOIIUX CHCTEMAaxX
KOOpAMHAT ¥ M 3HAYEHHUH PETryIUPYyEMOT0 pacCTOSTHUS MEXy HUMHU.

Knrwoueesvle cnoea: coocHble KOHTPYIHIUH TMPSIMBIX, KBaJIpaTHYECKOE MPUOIIKEHNUE,
yrioBoe oTkinoHenue, L1 anana, MaHUTY IAIMOHHBIN MEXaHN3M.
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