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 The problem of determining special points of a moving body which in alternating sets of 

its given positions deviate least, in the least square sense, from coaxial circular cylinders is 

considered. The sought-for approximation is one which minimizes the sum of squared 

algebraic deviations of these points  from  the  coaxial  cylinders  approximating  their  paths  

in each of the given sets of positions. The points of interest lie at the intersection of three 11
th

 

order surfaces determined from the stationary conditions of the least square objective function. 

The theory and methods developed in this paper can be readily applied to the synthesis of 

adjustable parallel robotic mechanisms of modular structure designed for  the approximate 

generation of multiphase motions or multiple point-paths of the output link. 

 Keywords: coaxial cylinders, least square approximation, algebraic deviation, 

approximate synthesis, reconfigurable robotic mechanism. 

 
 Introduction. In [1] the points of a rigid body whose several positions lie on a 

right-circular cylinder with the specified direction of its axis have been studied. It was 

established that under a general motion there are no points with more than 6 positions 

on one cylinder with the given axis orientation. In the general case, when the axis 

direction is left unspecified, the maximum number of such positions can  reach 8.  In  

[2] we have first considered the problem of determining those points in a moving body 

which, in an unlimited number of its prescribed positions, remain as close as possible 

to a cylinder, using as the measure of closeness the mean square deviation of such 

points from a cylinder for all given rigid body positions. The results of this study are 

presented also in [3], as a part of the approximational kinematic geometry developed 

there. 

 This paper is an extension of [2] for multiple sets of the prescribed positions of 

a moving body. Here we seek to determine those points of the moving body which in 

given sets of positions approximate, in the least square sense, a family of coaxial  

cylinders corresponding to different  sets of the given positions. Apart from its 

theoretical interest, the results of the present paper have also direct applications in  

designing adjustable robotic mechanisms built of  SPC type dyadic modules, 

connecting the manipulation object with the frame. A general methodology of the 

approximational synthesis of adjustable robotic mechanisms with different  structural 

alternatives of their dyad-modules is described in [4].  
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The paper is organized by the following 2 phases. First we consider a simpler 

problem of determining least square approximations of the given position sets of a

fixed point in the moving body by coaxial cylinders with the given direction of their 

common axis. Then we use the closed form solution of this problem as a basis for the 

search of the points in the moving body which fit best to coaxial cylinders in the 

multiple sets of its given positions.

 Least square approximations of alternating point-position sets by coaxial 

circular cylinders. A rigid body e undergoes spatial motion with respect to a fixed 

body E given by m sets of finitely separated positions    mje jN

iji ,...,2,1
1




. Coordinate 

systems oxyz and OXYZ are rigidly attached to e and E respectively. We consider the 

following problem: given a point  BBB zyxB ,,  in e, determine a set of m circular 

cylinders  m

jjiC
1
 with the common axis ,EQ  so that each j-th cylinder  Cj  of this 

set is as close as possible to the given j-th point-set   jN

ijiB
1
. 

For each cylinder Cj there is a point-set   jN

ijiB
1
 which should be “close” to that 

cylinder. In other words, we need to find one axis Q and m radii hj around it that will 

fit all m given point-sets as closely as possible. This problem would have been 

separable to m independent cylinder fitting problems considered in [2]. However, we 

require a common axis Q for all cylinders. 

A brief review of the known curve and surface fitting methods shows that the 

objective functions estimating “closeness” of the given point-sets to a cylinder usually 

have 3 formulations: 

1) The  least square objective when the sum of squares of the distances of points Bji to 

the cylinders Cj are minimized. 

2) The minimax objective when the maximum distance of points Bji to the cylinders Cj 

is minimized. 

3) The minisum objective when the sum of these distances is minimized. 

     By analogy with [2], here we will use the least square objective, leading to a closed 

form solution of the problem under consideration. 

      The distance of point Bji from the cylinder axis Q can be represented in the 

following form: 

Q

QRR
h

AB

ji

ji



)(

,                                                (1) 

where  
zyx QQQQ ,,  is the orientation vector of the axis Q, 

jiBR is the position 

vector of jiB  from the origin O, AR  is the position vector of the intersection point A 

of Q with coordinate plane OXZ. With these denotations the normal distance ji  of 

jiB  from Q may be written as: 
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δji=hji-h.                                                         (2) 

 However, there is no closed form solution for the least square cylinder fitting 

problem based on (2), since the unknown axis coordinates are under radicals and 

lengthy iterative search routines are needed to determine them. 

 The denominator in (1) does not depend on the position of e in E. It permits us 

to use another expression known as algebraic deviation or weighed difference as the 

error function [3]: 

  
         2222222 2 jAAABBjiji hQQRRQRRQRhhQ

jiji
 .    (3) 

Transforming (3) and grouping for 
AA ZX ,  and constant H, we obtain the linear 

function  

                                       
)3()2()1(

jijAjiAjiji fHZfXf  ,                              (4) 

where 

   ,2,2 )2()1(

jiYXjiXYjijiZYjiYzji UQUQfUQUQf 

   222222)3( , jAjjiZjiYjiXji hQQRHUUUf 

 and UjiX, UjiY, UjiZ are the projections of vector QRU
jiBj   on the fixed coordinate 

axes: 

Zy

BB

jiX
QQ

ZY
U

jiji

 , 
xz

BB

jiY
QQ

XZ
U

jiji

  , 

yx

BB

jiZ
QQ
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U

jiji

 . 

 

         The selected least square objective requires to minimize the sum of the squared 

errors (4) for all 



jN

j

jNN
1

given positions of e: 

                                                    

.
1 1

2
 


m

j

N

i

ji

j

S

                                                      

(5) 

For any point  BBB zyxB ,,  in e and specified direction of Q, the coaxial 

cylinders  mjC j ,...,2,1
 

approximating the corresponding sets of point positions 

  jN

ijiB
1
 mj ,...,2,1  are determined from the necessary conditions for a minimum of  

(5): 

.0,...,0,0,0
1





















mA h

S

h

S

Z

S

X

S
 

 

(6) 

By substituting in (5) from (4), after some transformations, conditions (6) can 

be reduced to the following system of (2+m)  linear equations in XA, ZA, Hj 

 mj ,...,2,1  presented below in a matrix form: 

                                          M · P = F,                                                            (7) 
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          It  is easy to see from (3–5) that conditions 0/  hS  in (6) are equivalent to 

0/  jHS  and thus lead to the same last m linear equations in (7). 

          To solve system (7), we express coordinates 
jiBjiBjiB ZYX ,,  of point B in E 

through its coordinates in e by means of the following linear transformation: 
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(8) 

 

where  is a 3×3 rotation matrix which brings the system xyz from a position with its 

axes initially parallel to the axes X, Y, Z to its i-th position of the given j-th position set
    jN

ijie
1
. 
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 It follows then that if we have m sets of finite positions eji(j=1,2,...,m; 

i=1,2,…,Nj) and specify a point  BBB zyxB ,,  in e, equation (7) uniquely determines 

m right circular cylinders ),...,2,1( mjC j   with their common axis Q parallel to the 

given vector ),,( ZYX QQQQ and radii hj (j=1,2,…,m) given by the expression 

  ).,...,2,1()( 2

1

mjHQRh jAj   
 

(9) 
 

         For the further analysis, it is convenient to present the solution of (7) in the 

vector form: 

),...,,,(
1

),...,,,(
11 mHHAAmAA DDDD

D
HHZX  , 

 

(10) 

where D is the coefficient determinant of (7), 
mHHAA DDDD ,...,,,

1
 are (2+m)-th 

order minors in the expanded matrix of (7). 

 It was established in [2] that if the total number of the given positions N>5, D>0 

for each point .eB  Determinants in the right side of (10) are functions of 

coordinates BBB zyx ,,  of B in e. It follows then from (10) that corresponding to any 

point B in e there is a unique line Q in E which is the common axis of cylinders Cj 

(j=1,2,…,m) (with the varying radii (9))  approximating, in the least square sense, 

given m alternating point-sets    mjB jN

iji ,...,2,1
1




. Now, if we fix a line Q in E with 

the given orientation  zyx QQQ ,, , double sum (5) can be transformed with the use of 

(8) into a 4-th order polynomial in BBB zyx ,, . Thus, the stationary conditions for S: 4-

th order polynomial in BBB zyx ,, . Thus, the stationary conditions for S: 

0,0,0  BBB zSySxS  generate 3 cubic surfaces in e.  It  follows 

then that for any axis Q in E with the fixed orientation  zyx QQQ ,,  we can find at most 

27 real points in e which make objective function (5) stationary. 

 

Points of e deviating least from coaxial cylinders in the given position 

sets  ),...,2,1( mj 


jN

1ijie . Now we proceed to the main issue of this study: which points 

of e will approximate best coaxial cylinders Cj (j=1,2,…,m) in the  corresponding 

position-sets    mje jN

iji ,...,2,1
1




? Given the position jie  of e and the fixed orientation 

of Q, double  sum (5)  becomes a function of (5+m) design variables: 

).,...2,1(,,,,, mjHzyxZX jBBBAA   

Therefore, for S to be a minimum, the following conditions are necessary: 

).,...,2,1(0,,,,0,0 mjHSzSySxSZSXS jBBBAA        (11) 

 

          Equation (10) following from the system of the first two and last m conditions 

(11) together with (8) permits to express parameters ),...,2,1(,, mjHZX jAA   through the 
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sought-for coordinates BBB zyx ,, . To study the locus of points in e for which S has 

stationary values the 3-th, 4-th and 5-th conditions in (11)  are presented as: 
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Using expressions (4), (8), (10), after some transformations, equations (12) can 

be presented in the following form [2]: 
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where coefficients  zyxlkk ll ,,,..., 91   are zero, first, second or third order 

polynomials in BBB zyx ,, . 

 Equations (13) define three 11-th order surfaces in e whose common points 

satisfy all (5+m) conditions (11) necessary for a minimum of the objective function 

(5). As established in [2] for the case m=1, the maximum number of real common 

points of these surfaces is 211. It is easy to make sure that this result does not depend 

on m and is true also for any m>1. The real task is to distinguish among so many 

possible solutions of (13) those which provide a sufficient accuracy of approximation 

to coaxial circular cylinders. 

 For practical aims, it may be more effective to avoid the cumbersome 

computational process of solving nonlinear equations (13) and organize an iterative 

search of the sought-for points in xyz system based on the direct minimization of the 

mean square sum (5) by one of the computational algorithms developed in [3]. 

 Application to the synthesis of reconfigurable robotic mechanisms. The 

special points of e with the coaxial approximate cylindrical paths traced in alternating 

sets of its prescribed displacements can be directly applied to design reconfigurable 

parallel robotic mechanisms for the approximate generation of the given multiple 

motions of the output link to fit the requirements of the changing kinematic tasks. The 

procedure of the synthesis of such mechanisms is very simple [4]: in each of the 

determined special points of e which in the m given sets of its positions remain 

sufficiently close to a family of coaxial circular cylinders we attach a two link SPC type 

kinematic chain (dyad)  connected  with the frame E with its cylindrical pair. The middle 

prismatic joint of this dyad is fixed in each of the m working cycles of the mechanism 

and functions only in the reconfiguration mode, when the distance from the center of the 

spherical joint (S) to the axis of the cylindrical joint (C) is readjusted for the changing 

kinematic tasks. Attaching to e five SPC dyads, we obtaina reconfigurable 5 (SPC) 
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robotic mechanism of modular structure (Fig.) realizing approximately the given m sets 

of positions of the output link e. 

Fig. A reconfigurable parallel robotic mechanism with 5 SPC type dyad-modules 
 

         Conclusion. We have presented a study of special points of a rigid body which 

in the m alternating  sets of the given positions  deviate least from the coaxial circular 

cylinders. The results presented here can be considered as a generalization of the 

theory of so called “least square cylindrical points” developed in [2] for the case of a 

single set of rigid body positions. Similar to the case of a single position set, it is 

established that the locus of the sought-for special points lies at the intersection of 

three 11
th
 order algebraic surfaces embedded in e, while the maximum number of the 

real common points of these surfaces cannot be more than 211. The special points 

studied above can be  readily applied for building reconfigurable platform-type 

manipulators composed of SPC dyads connecting output link e with frame E. These 

mechanisms are designed to generate prescribed multiphase motions or multiple paths 

of the moving platform with the required accuracy of approximation. The numerical 

results of this study will be presented in a companion paper. 
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ТОЧКИ ТВЕРДОГО ТЕЛА, АППРОКСИМИРУЮЩИЕ СООСНЫЕ ЦИЛИНДРЫ 

В ЧЕРЕДУЮЩИХСЯ МНОЖЕСТВАХ ЕГО ЗАДАННЫХ ПОЛОЖЕНИЙ 

 

Ю.Л. Саркисян 

 

 Рассматривается задача определения точек движущегося тела, которые в 

чередующихся множествах его положений наименее отклоняются от соосных прямых 

цилиндров в смысле наименьших квадратов. Искомое приближение минимизирует 

сумму квадратов алгебраических отклонений (расстояний) указанных точек от соосных 

цилиндров в соответствующих множествах заданных положений. Интересующие нас 

характерные точки лежат на пересечении трех алгебраических поверхностей 

одиннадцатого порядка, отображающих условия стационарности целевой функции 

среднеквадратического отклонения. Теория и методы, разработанные в статье, могут 

быть непосредственно применены в синтезе регулируемых параллельных 

манипуляционных механизмов с модульной структурой, предназначенных для 

приближенного воспроизведения заданных многоэтапных движений или 

множественных траекторий выходного звена. 

Ключевые слова: соосные цилиндры, квадратическое приближение, 

алгебраическое отклонение, аппроксимационный синтез, реконфигурируемый 

манипуляционный механизм. 
 

 

 

 


