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RIGID BODY POINTS APPROXIMATING COAXIAL CYLINDERS IN
ALTERNATING SETS OF ITS POSITIONS

Yu.L. Sarkissyan

National Polytechnic University of Armenia

The problem of determining special points of a moving body which in alternating sets of
its given positions deviate least, in the least square sense, from coaxial circular cylinders is
considered. The sought-for approximation is one which minimizes the sum of squared
algebraic deviations of these points from the coaxial cylinders approximating their paths
in each of the given sets of positions. The points of interest lie at the intersection of three 11"
order surfaces determined from the stationary conditions of the least square objective function.
The theory and methods developed in this paper can be readily applied to the synthesis of
adjustable parallel robotic mechanisms of modular structure designed for the approximate
generation of multiphase motions or multiple point-paths of the output link.
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Introduction. In [1] the points of a rigid body whose several positions lie on a
right-circular cylinder with the specified direction of its axis have been studied. It was
established that under a general motion there are no points with more than 6 positions
on one cylinder with the given axis orientation. In the general case, when the axis
direction is left unspecified, the maximum number of such positions can reach 8. In
[2] we have first considered the problem of determining those points in a moving body
which, in an unlimited number of its prescribed positions, remain as close as possible
to a cylinder, using as the measure of closeness the mean square deviation of such
points from a cylinder for all given rigid body positions. The results of this study are
presented also in [3], as a part of the approximational kinematic geometry developed
there.

This paper is an extension of [2] for multiple sets of the prescribed positions of
a moving body. Here we seek to determine those points of the moving body which in
given sets of positions approximate, in the least square sense, a family of coaxial
cylinders corresponding to different sets of the given positions. Apart from its
theoretical interest, the results of the present paper have also direct applications in
designing adjustable robotic mechanisms built of SPC type dyadic modules,
connecting the manipulation object with the frame. A general methodology of the
approximational synthesis of adjustable robotic mechanisms with different structural
alternatives of their dyad-modules is described in [4].
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The paper is organized by the following 2 phases. First we consider a simpler
problem of determining least square approximations of the given position sets of a
fixed point in the moving body by coaxial cylinders with the given direction of their
common axis. Then we use the closed form solution of this problem as a basis for the
search of the points in the moving body which fit best to coaxial cylinders in the
multiple sets of its given positions.

Least square approximations of alternating point-position sets by coaxial
circular cylinders. A rigid body e undergoes spatial motion with respect to a fixed

body E given by m sets of finitely separated positions {eji }N (j=12,...,m). Coordinate

i=1
systems oxyz and OXYZ are rigidly attached to e and E respectively. We consider the
following problem: given a point B(xB,yB,zB) in e, determine a set of m circular

cylinders {(:ji }Jm1 with the common axis Q € E, so that each j-th cylinder C; of this
set is as close as possible to the given j-th point-set {Bji }.Nfl

For each cylinder C;there is a point-set {Bji }.N—Jl
cylinder. In other words, we need to find one axis Q and m radii h; around it that will
fit all m given point-sets as closely as possible. This problem would have been
separable to m independent cylinder fitting problems considered in [2]. However, we
require a common axis Q for all cylinders.

A brief review of the known curve and surface fitting methods shows that the
objective functions estimating “closeness” of the given point-sets to a cylinder usually
have 3 formulations:

1) The least square objective when the sum of squares of the distances of points B; to
the cylinders C; are minimized.
2) The minimax objective when the maximum distance of points Bj; to the cylinders C;
is minimized.
3) The minisum objective when the sum of these distances is minimized.
By analogy with [2], here we will use the least square objective, leading to a closed
form solution of the problem under consideration.
The distance of point Bj from the cylinder axis Q can be represented in the
following form:

which should be “close” to that

|Re, ~RJ=Q
i Q

where Q(QX,Qy,QZ) is the orientation vector of the axis Q, R_Bj_is the position

, M)

vector of B from the origin O, R_A is the position vector of the intersection point A
of Q with coordinate plane OXZ. With these denotations the normal distance &; of

B, from Q may be written as:
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di=hji-h. )
However, there is no closed form solution for the least square cylinder fitting
problem based on (2), since the unknown axis coordinates are under radicals and
lengthy iterative search routines are needed to determine them.
The denominator in (1) does not depend on the position of e in E. It permits us
to use another expression known as algebraic deviation or weighed difference as the
error function [3]:

— =\ — —\ = — =\

A, = Q2 —1?)=(Ry, xQf +2[Ry. —R,)<QR, +R.xQf ~Q*n2. @3
Transforming (3) and grouping for X,,Z, and constant H, we obtain the linear
function

_fO @ ©)
Ay =fOX, +FPZ,+H, + 0, (4)
where

f;'f'l) = Z(Qz U JiY _QYU]}'Z )’ f]'E'Z) = Z(QY U Jix T QXU/J’Y )’
0 =02 +U2 +U%,  H, =(R,xQf -Q?n’
and Ujix, Ujiv, Ujiz are the projections of vector U, =Rg,xQ ON the fixed coordinate
axes:
YBJI ZBiI Xle YBJI
Qy QZ Qz Qx Qx Qy

The selected least square objective requires to minimize the sum of the squared
N;
errors (4) forall N = Z Nj given positions of e:
j=1

jix —

) Uti = ’ Ujiz = .

m N;j

S=2 DA% )

j=1 =1
For any point B(XB, yB,ZB) in e and specified direction of Q, the coaxial
cylinders Cj(j=1,2,...,m) approximating the corresponding sets of point positions

{Bji }IN=’1 (j :1,2,...,m) are determined from the necessary conditions for a minimum of

(®):
05 o 85 _o 05 _o 8 _
oX oz on, “oh,
By substituting in (5) from (4), after some transformations, conditions (6) can
be reduced to the following system of (2+m) linear equations in X,, Za, H;
(j=12,...,m) presented below in a matrix form:
M-P=F, (7
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where

i i S ( (1)) i S SIS N 6
f f f f f
j=1 i=1 j=1 i=1 i=1 ' |Z
m 1 £ (2 m 2 W ¢ (2 & ¢ (2
DIPTSR TSI 120 B IR ACI 38 15
=1 i=1 =1 i=1 i=1 i=1
M=| D0 AR N, 0 |
I=;|. |N:;|_
f .0 PR 0 0
i=1 =l
Nm Nm
fr D 0 N,
L i=1 i=1 B
P= [XA, ZA, Hl, ,Hm],
m Ni Ny Ny
F= zz fj(il)Rz zzf(iZ)Réji’ ZRéu’""zRémi '
j=1 i=1 j=1i=1 i=1 i=1

It is easy to see from (3-5) that conditions S/oh =0 in (6) are equivalent to
0S/oH; =0 and thus lead to the same last m linear equations in (7).

To solve system (7), we express coordinates XBji, YBji, ZBJ.i of point B in E
through its coordinates in e by means of the following linear transformation:

XBji XOji Xg (8)
YBji = YOji +Tji Y |\
ZBji ZOji Zg

where T; is a 3x3 rotation matrix which brings the system xyz from a position with its
axes initially parallel to the axes X, Y, Z to its i-th position of the given j-th position set

{eji }.N:Jl
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It follows then that if we have m sets of finite positions e;(j=1,2,...,m;
i=1,2,...,N;) and specify a point B(XB, Y ZB) in e, equation (7) uniquely determines
m right circular cylinders C;(j =12,...,m) with their common axis Q parallel to the

given vector Q (Q,,Q,,Q, ) and radii h; (j=1,2,...,m) given by the expression

— — 1 .
h=[RxQ)-H k (1=12,...m). o
For the further analysis, it is convenient to present the solution of (7) in the
vector form:

1
(XasZa Hypeos Hy) == (D, Dai Dy 10Dy, ) (10)

where D is the coefficient determinant of (7), D,,D,,Dy ,...,D, are (2+m)-th

order minors in the expanded matrix of (7).
It was established in [2] that if the total number of the given positions N>5, D>0
for each pointB ee. Determinants in the right side of (10) are functions of

coordinates Xg, Yg,Zg Of B in e. It follows then from (10) that corresponding to any

point B in e there is a unique line Q in E which is the common axis of cylinders C;
(G=1,2,....,m) (with the varying radii (9)) approximating, in the least square sense,

given m alternating point-sets {Bji}i“:l(j =12,...,m). Now, if we fix a line Q in E with
the given orientation (QX,QY,QZ), double sum (5) can be transformed with the use of
(8) into a 4-th order polynomial in Xg, Yg,Zg . Thus, the stationary conditions for S: 4-

th order polynomial in Xg,Yg,Zg. Thus, the stationary conditions for S:

0S/oxg =0, 0S/dy; =0,05/0z, =0 generate 3 cubic surfaces in e. It follows
then that for any axis Q in E with the fixed orientation (Q,,Q,,Q, ) we can find at most

27 real points in e which make objective function (5) stationary.

Points of e deviating least from coaxial cylinders in the given position
sets {eji }:“:il(j =12,..,m). Now we proceed to the main issue of this study: which points
of e will approximate best coaxial cylinders C; (j=1,2,...,m) in the corresponding
position-sets {eji }IN'l(J =12,...,m)? Given the position e; of e and the fixed orientation

of Q, double sum (5) becomes a function of (5+m) design variables:
XprZps Xas Y Zg, Hj (j=12,..m).

Therefore, for S to be a minimum, the following conditions are necessary:

0S/oX =0, 8S/0Z, =0,85/0xy, 0S/dyg, 0S/0zg, as/aHj=O(j=1,2,...,m). (11

Equation (10) following from the system of the first two and last m conditions
(11) together with (8) permits to express parameters X,,Z,,H,(j=12,..,m) through the
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sought-for coordinates Xg, Yy, Zg. To study the locus of points in e for which S has
stationary values the 3-th, 4-th and 5-th conditions in (11) are presented as:

m N oA .. m N oA .. m N; oA ..
A, —2 =0, A.—2 =0, A, —2=0. (12)
;,':1 " oxy ;; "oy ;; " 0z

Using expressions (4), (8), (10), after some transformations, equations (12) can
be presented in the following form [2]:

kiDj +k;DZ +k;Dy D, + > ky;Dy D, + > ki;Dy D, +kgDy D+

) = = (13)
+kD,D+> kgD, D+kD?=0 (I=xy,2)

j=1

where coefficients kl',...,ké (I:X, y,z) are zero, first, second or third order

polynomials in Xz, Yg,Zg.

Equations (13) define three 11-th order surfaces in e whose common points
satisfy all (5+m) conditions (11) necessary for a minimum of the objective function
(5). As established in [2] for the case m=1, the maximum number of real common
points of these surfaces is 211. It is easy to make sure that this result does not depend
on m and is true also for any m>1. The real task is to distinguish among so many
possible solutions of (13) those which provide a sufficient accuracy of approximation
to coaxial circular cylinders.

For practical aims, it may be more effective to avoid the cumbersome
computational process of solving nonlinear equations (13) and organize an iterative
search of the sought-for points in xyz system based on the direct minimization of the
mean square sum (5) by one of the computational algorithms developed in [3].

Application to the synthesis of reconfigurable robotic mechanisms. The
special points of e with the coaxial approximate cylindrical paths traced in alternating
sets of its prescribed displacements can be directly applied to design reconfigurable
parallel robotic mechanisms for the approximate generation of the given multiple
motions of the output link to fit the requirements of the changing kinematic tasks. The
procedure of the synthesis of such mechanisms is very simple [4]: in each of the
determined special points of e which in the m given sets of its positions remain
sufficiently close to a family of coaxial circular cylinders we attach a two link SPC type
kinematic chain (dyad) connected with the frame E with its cylindrical pair. The middle
prismatic joint of this dyad is fixed in each of the m working cycles of the mechanism
and functions only in the reconfiguration mode, when the distance from the center of the
spherical joint (S) to the axis of the cylindrical joint (C) is readjusted for the changing
kinematic tasks. Attaching to e five SPC dyads, we obtaina reconfigurable 5 (SPC)
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robotic mechanism of modular structure (Fig.) realizing approximately the given m sets

of positions of the output link e.
\%\x

Qo)

(3]

X
Fig. A reconfigurable parallel robotic mechanism with 5 SPC type dyad-modules

Conclusion. We have presented a study of special points of a rigid body which
in the m alternating sets of the given positions deviate least from the coaxial circular
cylinders. The results presented here can be considered as a generalization of the
theory of so called “least square cylindrical points” developed in [2] for the case of a
single set of rigid body positions. Similar to the case of a single position set, it is
established that the locus of the sought-for special points lies at the intersection of
three 11" order algebraic surfaces embedded in e, while the maximum number of the
real common points of these surfaces cannot be more than 211. The special points
studied above can be readily applied for building reconfigurable platform-type
manipulators composed of SPC dyads connecting output link e with frame E. These
mechanisms are designed to generate prescribed multiphase motions or multiple paths
of the moving platform with the required accuracy of approximation. The numerical
results of this study will be presented in a companion paper.
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ML UUrULP SPYUD L6 PPUrUCURNM Y APURUNRESNRLLEMNRY
CUUUMNULSL 4LULLEr Unsuruni ussSsrh UuuhL

3niL. Uwpquyut

Thuwpyynw £ nbnuownpddnn whun dwpduh wjuyhuh Yenbph npnadwu fuunhpp,
npnup upw  bwfuwtwd nhppbph  hpwpwhwenpn  pwqgdnieniutbipnud wdbuwphsu  Gu
obinynu hwdwnwugp 2powuwgdwihu guuubphg' twqugnyu pwnwlnwhubph hdwuwnny:
Lwoqwnlynn  dnunwpynwip wqupynd £ npnubh Ybnbph  hwdwnwugp  quuutbiphg
hwupwhwoywywu sbnnudubph pwnwynwhubph gndwpp dwpduh wwd nhppbiph pninp
pwquntgyniutbph hwdwp: Nwnwitwuppnigjwt wnwplw punyewgpulwu Yeinbpp npnoynid
Gu  dhoht  pwnwlynwwiht obindwt  Uwywwwlwiht  Sniwuyghwih  unwghnuwpnyejwu
wwjdwuubpu wpunwwwwytpnn 1-pn Yupgh tpbp hwupwhwojwywt hwdwuwpnwiubph
thnfuhwwnnuwing: - Ubpluwjwgdwsd  wbunipyniup b dbennutpp Ywpnn GU  ninnuyhnpbu
Yhpwndly  dnanuuwiht Yunnigwépn  Ywpgwynpynn - gniqwhtin dwuhwniywghnu
dbfuwuhqdubiph upuptiqnud, npnup twfuwwnbujwd Gu Gph onwyh pwqdwihny swpdnwdubph
Ywd pwqdwlyh hGwnwgdtiph dninwynp yEpwpunwnpnipjut hwdwn:

Unwigpuyhti  pwnbp. hwdwnwugp quuubp, pwnwynwwht  dniwpynid,
hwupwhwqwywu obtinnud, wwpnpuhdwghnu uhuptq, ybpwynubhgnipwgynn
dwuhwniywghnu dafuwuhqu:

TOYKHU TBEPJOI'O TEJIA, AIIITIPOKCUMUPYIOINHUE COOCHBIE HUJINHAPHI
B YEPEJIYIOHUXCS MHOXKECTBAX EI'O 3AJTAHHBIX ITOJIOKEHUI

10.J1. Capkucsin

PaccmaTpuBaeTcss 3amada ONpeNeNieHHs] TOUYEK MABWXKYINETOocs Tela, KOTOphle B
YepeAyIOINXCS MHOKECTBaX €ro IMOJ0XKEHHI HauMeHee OTKJIOHSIOTCS OT COOCHBIX HPSMBIX
LIINHAPOB B CMBICIE HAMMEHBIIMX KBaJApaToB. Vckomoe NpUOIIKEHHE MUHHUMH3HPYET
CyMMY KBaJpaTOB ajreOpanyeckux OTKIOHEHUH (PacCTOSHMUIT) yKa3aHHBIX TOUEK OT COOCHBIX
LIINHAPOB B COOTBETCTBYIOIIMX MHOKECTBAaX 3aJaHHBIX MOJIOKeHWH. VHTepecyiomme Hac
XapakTepHBIE TOYKH JIe)KaT Ha TIEPECEUCHHH TpexX anredpamdecKuxX MOBEPXHOCTEH
OIMHHAIIATOTO MOPSAKA, OTOOPaXAIOIIMX YCIOBUS CTAI[MOHAPHOCTH LENEeBOM (QyHKIMN
CPEIHEKBaIpaTHYECKOTO0 OTKJIOHEHHs. Teopus W MeTonbl, pa3padOTaHHBIE B CTaTbe, MOTYT
ObITh  HEIOCPE/JCTBEHHO IPUMEHEHbl B  CHHTE3€  PEryJMpYyeMBIX  IapajulelbHBIX
MaHUIYJIIMUOHHBIX MEXaHM3MOB C MOJYJIBHOW CTPYKTYpOH, TpEeIHa3HAUYEHHBIX JUIf
NpUOIMKEHHOTO  BOCIIPOM3BENCHMS  3aJaHHBIX ~ MHOTOSTAIIHBIX  JBWKEHUH WM
MHOKECTBEHHBIX TPA€KTOPHUIl BEIXOJHOTO 3BEHA.

Knioueevie  cnoga:  coocHble — LWIMHAPBL,  KBaJPAaTHUECKOE  NPUOIIKCHHE,
anreOpandeckoe  OTKJIIOHEHHE,  aNlpOKCHMAIMOHHBIM  CHHTE3, PEKOH(UTYpHUPYEMBIi
MaHUITYJIAHOHHBIA MEXaHU3M.
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