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A study on the strength of materials in case of their cyclic loading within various ranges 

of alternating stresses is introduced. The graphical representation of relationship between the 

cycle average stress and the range of repeated or fluctuating stresses has been established. On 

the basis of a simplified limit stresses’ graph for any asymmetric cycle, a stress calculation 

formula is derived. Considering the deformation process as an elasto-plastic phenomenon, a 

Mathiе-Hill equation-type differential equation with variable constants has been obtained for a 

uniaxial oscillatory motion of a specimen. For a low frequency repeated cyclic load, an 

equation of a fatigue strength curve has been derived. 
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Introduction. The purpose of this study is to analyze the endurance of materials 

under variable cyclic loading with various ranges of stress variation. The graphical 

relationship of the average cycle stress to the range of stresses has been obtained. 

From a simplified diagram of ultimate stresses, a computation formula was derived for 

the ultimate fatigue strength for any asymmetric cycle. Considering the deformation 

process as an elasto-plastic deformation, a differential equation of uniaxial oscillation 

of an object with a variable Mathiеu-Hill’s equation coefficient was set up. For a low 

frequency of stress alteration, an equation of the endurance graph was plotted. The 

loading pattern causing stresses of varying magnitude in cross-sections of machine 

and assembly parts is considered as the most typical. The failure of machine parts at 

such loads occurs at stresses below the ultimate strength and even yield point if only 

these changes of stresses are repeated sufficiently frequently.  

The relationship between the number of cycles before the fracture occurs and  the 

stresses causing the failure has been established on the basis of  endurance curves (at 

least so far) plotted by experimentally obtained data N,  in  Nlg  or coordinates 

as shown in Fig.1. 
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Fig. 1. Fatigue curves: a –  in N, coordinates; b –  in Nlg,  coordinates 

 

These curves enable to define the most (maximum) stress of the cycle – the 

fatigue strength at which the sample specimen under the test does not fail at a 

(conditionally given) rather so called great number of cycles (stress variation). Most 

often, for ferrous metals it is enough to set up this stress on the basis of N=10
7
 number 

cycles. At that, it is assumed that if the specimen does not fail when the base number 

of stress variation is reached while conducting tests, then the specimen will not fail at 

further tests. 

A typical fracture due to fatigue has two zones of fatigue failure - fine-grained, 

almost smooth surface where fatigue crack penetrates deep into the cross-section, and 

the zone of static failure - coarse-grained textures over which final brittle fracture 

occurs. The pattern of fatigue failure zone depends on the number of loading cycles  

during which the crack  develops since  in the process of cyclic loading mutual 

rubbing and bearing of surfaces occur, which is followed by strain hardening. 

The examination of strain hardening distribution on the fracture surface has shown 

that the most hardening takes place where the maximum number of contact cycles 

occurs in the crack initiation zones [1]. If the required life span of a part limited by a 

number of cycles is smaller than that of the base number then in computation it is 

necessary to make use of a limited fatigue point, which is the maximum value of the 

cycle stress that the given part can withstand. The endurance limit depends both on the 

nature of the cycle time-dependent variation – degree of the cycle asymmetry and the 

type of stressed state. In most cases fatigue tests are carried out for the symmetric cycle 

meanwhile in many cases, the computation of machine parts deals with stresses which 

change by asymmetric cycle [2]. A more precise idea on the actual strength of machine 

parts can be obtained from the results of a real-life test carried out on machines 

completely reproducing operational conditions of loading (according to the type of the 

stressed state, loading conditions, etc.). Weller was the first who systematically carried 

out experimental research to reveal and understand the phenomena of metal fatigue. He 

found that the stress range  ,R minmax     necessary to cause failure decreases as the 
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average m  stress increases. Other researchers show that there is no general law 

coupling the average stress and the stress range [3]. 

Herber Baushinger [4] performed a series of fatigue experiments and on the basis 

of the obtained results proposed a parabolic law coupling the stress range R and the 

average stress .m  Fig. 2 shows this relation by parabolic curves where the average 

stress and the range of stress are expressed by the parts of the breaking limit. The stress 

range R turned to be the maximum in case of a symmetric cycle of stresses and tends to 

zero ( 0m  ) when the average stress tends to the breaking point [5]. If the endurance 

limit for the symmetric cycle of stresses and the breaking point are known, the 

endurance limit for any asymmetric is known, then the breaking limit for any 

asymmetric cycle of stresses can be obtained from the limiting curves shown in Fig. 3. 
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Fig. 2. The average stress of the cycle vs the stress range R in the parts of the breaking limit 
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Fig. 3. Dependence of max   and min  on m  
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The sloping upward OA and downward OB straight lines (Fig. 2) define the 

region AOB where the stress changes its sense in the cycle. The stress out of this 

region always remains tensile or compressive. The experimental determination of the 

values within the region AOB usually lies between the parabolas and the 

corresponding lines. If the stress is always tensile or compressive, the value of R is not 

only below the Herber parabola, and even lower of the corresponding lines [6]. 

Research method.  Instead of representing the range of stresses as function m , 

sometimes max  and min  are drawn in function m  (Fig. 4) and are computed from 

equation 2/Rmmax  , 2/Rmmin   and plotted by adding   R/2 to the ordinates 

of the AOB line sloping at an angle of 45
0
. 
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Fig. 4. Simplified diagram of ultimate stresses  

 

The vertical line passing through point D corresponds to a tensile stress of the 

symmetric cycle.  

Point A represents the ultimate tensile strength of a material and point B – the 

ultimate compression strength. The curves max  and min  represent the limiting states for 

fluctuating stresses. If the points corresponding to some real fluctuating stresses lie within 

AEBDA, the material will withstand that stress in an infinite number of cycles without 

failure. The curves max  and min  have been obtained from the parabolic curve (Fig. 2), 

however the parabolas in many cases are substituted by two sloping lines and the safety 

region shown in Fig. 3 is obtained in the form of the parallelogram AFBCA. 

Many researchers find that the range of stresses depends not only on the magnitude 

but also the sense of the average stress m . The ultimate compressive strength often 

differs from the ultimate tensile strength. For instance, for a number of materials the 

ultimate compressive strength (especially for brittle materials) is considerably more than 

the ultimate tensile strength. For composite materials, on the contrary, the ultimate 

compressive strength is almost 50 per cent lower than the ultimate tensile strength. Then, 

instead of symmetric parabolas (Fig. 2), we get asymmetric curves [7]. It is readily seen 
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that such approaches of considering the asymmetry of cyclic stresses to define the ultimate 

strength in fluctuating stresses is rather complicated and the accuracy is arguable. 

For a more simplified solution of the problem, it is assumed that the variation of 

the working load up to the ultimate state between the components of stress cycles a  

and min  remains constant ( a / min = constant). 

Then the endurance limit for the given asymmetry coefficient r is written as:  
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Fig. 4 shows a simplified diagram drawn by static strength ( Tb , ) and 

endurance limit 1 . 

According to the graph shown in Fig. 4 we have: 
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From Eqs. (1) and (2) we have: 
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Equation of the AC line can be represented in the following form: 
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Taking into account Eqs. (3) and (4) we get: 
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which means that it is sufficient to know the limit of static strength  Tb   and endurance 

limit 1  to determine the ultimate fatigue stress for any asymmetric cycle (Fig. 5). 
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Fig. 5. Fatigue strength for the given asymmetry of the cycle 
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For evaluating the strength of machine parts and specimens, the value of endurance 

limits obtained by tests results needs to be corrected in view of a number of known 

strength factors (forms and absolute dimensions, state of a specimen surface, properties 

of surface layer, existing various concentrators changing patterns of loading etc.) [8]. 

Practically, it is very important to know how quickly the curve N tends to an 

asymptote since the number of cycles necessary for setting up the endurance limit 

characterizes the life-span of a machine part. Experiments show that for ferrous metals 

the endurance limit can be set up with adequate accuracy on the basis of 10b   

millions cycles. For non-ferrous metals (for example, aluminum), there is no certain 

endurance limit, and ordinates of fatigue curve N  decreases infinitely as the 

number of cycles rises. Determining the endurance limits for any material requires a 

great number of experiments. Therefore, the practical interest is in setting up a 

relationship between endurance limits and other mechanical properties which can be 

defined theoretically and by static tests. Although a great number of experimental data 

have been gathered it is still impossible to set up such a relationship [9]. In our 

opinion, it is exceedingly difficult, by summing up fatigue damages and microcracks, 

to implement the idea of the theoretically established functional relationship between 

the stress increases depending on the number of  loading cycles. Expressions of 

integral sum of damages include initial magnitudes of microcracks and microflaws, 

which can be defined by correlation analysis of examination results of the test 

specimen. When it is considered that destruction most often occurs not where there is a 

large microcrack but in an absolutely other place and that the study of microcracks is not 

an easy work, then the significance of the present approach seems fantastic and 

ineffective, at times even meaningless. Therefore we consider the deformation process 

of a structure or a machine part not as pure elastic but as elasto-plastic. To describe an 

elasto-plastic deformation, a form of recording is used which frequently is applied in 

electrical engineering for defining the phase lag between voltage and current strength [10]. 

Then for the elasto-plastic deformation at uniaxial tension-compression, we get [11, 12]: 

 aeE   ,  (6) 

where  and   are elastic deformation and stress, respectively,   is some constant 

which depends on the material property, the nature of deformation and the type of the 

stressed state,   at the same time is a small quantity ( <<1). Eq. (6) can be written 

in the following form [13]: 

    1E , (7)  

and since  <<1, then expanding e  in Fourier series and neglecting small quantities, 

we get Eq. (7), where    is а residual plastic deformation after one stress change 

cycle. In multiple repeating of stress cycles, the plastic deformation will increase 
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causing a change in the stiffness test specimen. If the initial tension or compression 

stiffness of the part or specimen under consideration were 0C , then after a certain 

number of stress alteration cycles the stiffness would decrease to the value k0 CC  , 

where    

 nCC 0k   . (8)  

Since the plastic deformation increases by exponential law   en  , then the 

specimen stiffness also decreases by exponential law, where n  is the number of cycles 

in lgN parts, that is Nlgn  or n10n  .  

Then the stiffness of the test specimen, after load cyclic action, can be expressed 

as  Nlg1Co  . If the test specimen or a machine part is considered as an 

oscillation system with аn exciting varying force   tsinPtP  , where   is the 

angular frequency of oscillation  tНf,f2   , then uniaxial oscillatory 

motion of the specimen can be described by a differential equation of varying 

coefficient [13]: 

   tsin
m

P
yNlg1

m

C
y 0   ,  (9) 

where y  is the amplitude of oscillation, 0C  is the initial stiffness of the specimen, m  

is the unit volume mass of the specimen, P  is the maximum load. 

Research results. Eq. (9) is Mathiеu-Hill’s equation type with variable 

coefficient depending on time and the number of cycles. This equation has no analytic 

solution and can be solved by numerical methods only.  

However, when the load is changed with frequency less than 20 Hz, inertia forces 

can be neglected, we get: 

   tsin
m

P
yNlg1

m

C0   ,   (10)  

where tsinyy max  , then: 

   PyNlg1C max0  .  (11) 

Assuming that 
max

max
0

Y

P
C   where maxP  is the maximum force which at the initial 

section 0F  of the specimen can cause a stress equal to b  or ,, bT  where T  is a 

pressure limit in static loading, we have: 

   PNlg1Pmax  . (12) 

Dividing both sides by 0F , we have: 

     Nlg1b ,  (13) 
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or   

 bb Nlg   . (14) 

To determine coefficient , the specimen is assumed to be a prismatic bar which 

measures 0  in height, 0b   in width, and 0l  in initial length. Then the following can 

be written: 
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where   is the Poisson's ratio, 0F  is the initial cross-section area of the specimen, F  

is the cross-section area of the specimen after the first cycle of deformation. 

The difference between the initial and final cross-sections areas is: 

 FFF 0     or    
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Since  (as follows from yyny   ) ,                      

where   
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From Eqs. (16), (17), and (18) we have: 
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Having in view that  0ll   and  
El
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 , we get: 
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Then Eq. (14) can be written in the following form: 

 b1 Nlgm   ,   (21)  

where   
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Conclusions. On the basis of the studies carried out and the experience of 

worldwide practice, for the first time, a formula is derived for calculating the ultimate 

stresses for any asymmetric cycle of stress alteration at known endurance limit in 
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symmetric cycle. At a closer examination of the cyclic deformation process, and 

taking into account the plastic component differential equation for uniaxial oscillation 

of an object with variable coefficients of Mathiеu-Hill–type and based on it, the 

equation of endurance curve has been derived where the mechanical characteristic of 

materials and the stress parameters have been taken into consideration.     
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К ВОПРОСУ ОБ УСТАЛОСТНОЙ ПРОЧНОСТИ АНИЗОТРОПНЫХ 

МАТЕРИАЛОВ 

 

Г.Г. Шекян, Н.Г. Овумян 

 

Рассмотрена выносливость материала при переменных циклических нагружениях с 

различными диапазонами изменения напряжений. Получена графическая зависимость 

среднего напряжения цикла от диапазона изменения напряжений. Из упрощенной 

диаграммы предельных напряжений получена формула расчета предела усталостной 

прочности для любого асимметрического цикла. Рассматривая деформирование как 

упругопластический процесс, получено дифференциальное уравнение одноосного 

колебания объекта с переменными коэффициентами типа Матье–Хилла. Для малых 

частот изменения напряжений получено уравнение кривой выносливости. 

Ключевые слова: усталостная прочность, предел выносливости, напряжение, 

деформация, цикл, колебание. 

 

 

 

 

 


