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ON FATIGUE STRENGTH OF ANISOTROPIC MATERIALS
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A study on the strength of materials in case of their cyclic loading within various ranges
of alternating stresses is introduced. The graphical representation of relationship between the
cycle average stress and the range of repeated or fluctuating stresses has been established. On
the basis of a simplified limit stresses’ graph for any asymmetric cycle, a stress calculation
formula is derived. Considering the deformation process as an elasto-plastic phenomenon, a
Mathie-Hill equation-type differential equation with variable constants has been obtained for a
uniaxial oscillatory motion of a specimen. For a low frequency repeated cyclic load, an
equation of a fatigue strength curve has been derived.
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Introduction. The purpose of this study is to analyze the endurance of materials
under variable cyclic loading with various ranges of stress variation. The graphical
relationship of the average cycle stress to the range of stresses has been obtained.
From a simplified diagram of ultimate stresses, a computation formula was derived for
the ultimate fatigue strength for any asymmetric cycle. Considering the deformation
process as an elasto-plastic deformation, a differential equation of uniaxial oscillation
of an object with a variable Mathieu-Hill’s equation coefficient was set up. For a low
frequency of stress alteration, an equation of the endurance graph was plotted. The
loading pattern causing stresses of varying magnitude in cross-sections of machine
and assembly parts is considered as the most typical. The failure of machine parts at
such loads occurs at stresses below the ultimate strength and even yield point if only
these changes of stresses are repeated sufficiently frequently.

The relationship between the number of cycles before the fracture occurs and the
stresses causing the failure has been established on the basis of endurance curves (at
least so far) plotted by experimentally obtained data o,N in o —Ig N or coordinates

as shown in Fig.1.
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Fig. 1. Fatigue curves: a — in o,N coordinates; b — in o,lg N coordinates

These curves enable to define the most (maximum) stress of the cycle — the
fatigue strength at which the sample specimen under the test does not fail at a
(conditionally given) rather so called great number of cycles (stress variation). Most
often, for ferrous metals it is enough to set up this stress on the basis of N=10" number
cycles. At that, it is assumed that if the specimen does not fail when the base number
of stress variation is reached while conducting tests, then the specimen will not fail at
further tests.

A typical fracture due to fatigue has two zones of fatigue failure - fine-grained,
almost smooth surface where fatigue crack penetrates deep into the cross-section, and
the zone of static failure - coarse-grained textures over which final brittle fracture
occurs. The pattern of fatigue failure zone depends on the number of loading cycles
during which the crack develops since in the process of cyclic loading mutual
rubbing and bearing of surfaces occur, which is followed by strain hardening.

The examination of strain hardening distribution on the fracture surface has shown
that the most hardening takes place where the maximum number of contact cycles
occurs in the crack initiation zones [1]. If the required life span of a part limited by a
number of cycles is smaller than that of the base number then in computation it is
necessary to make use of a limited fatigue point, which is the maximum value of the
cycle stress that the given part can withstand. The endurance limit depends both on the
nature of the cycle time-dependent variation — degree of the cycle asymmetry and the
type of stressed state. In most cases fatigue tests are carried out for the symmetric cycle
meanwhile in many cases, the computation of machine parts deals with stresses which
change by asymmetric cycle [2]. A more precise idea on the actual strength of machine
parts can be obtained from the results of a real-life test carried out on machines
completely reproducing operational conditions of loading (according to the type of the
stressed state, loading conditions, etc.). Weller was the first who systematically carried
out experimental research to reveal and understand the phenomena of metal fatigue. He
found that the stress range R =0, —Omin» Necessary to cause failure decreases as the
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average o, stress increases. Other researchers show that there is no general law
coupling the average stress and the stress range [3].

Herber Baushinger [4] performed a series of fatigue experiments and on the basis
of the obtained results proposed a parabolic law coupling the stress range R and the
average stress o,,. Fig. 2 shows this relation by parabolic curves where the average
stress and the range of stress are expressed by the parts of the breaking limit. The stress
range R turned to be the maximum in case of a symmetric cycle of stresses and tends to
zero (o, =0) when the average stress tends to the breaking point [5]. If the endurance
limit for the symmetric cycle of stresses and the breaking point are known, the

endurance limit for any asymmetric is known, then the breaking limit for any
asymmetric cycle of stresses can be obtained from the limiting curves shown in Fig. 3.
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Fig. 2. The average stress of the cycle vs the stress range R in the parts of the breaking limit
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The sloping upward OA and downward OB straight lines (Fig. 2) define the
region AOB where the stress changes its sense in the cycle. The stress out of this
region always remains tensile or compressive. The experimental determination of the
values within the region AOB usually lies between the parabolas and the
corresponding lines. If the stress is always tensile or compressive, the value of R is not
only below the Herber parabola, and even lower of the corresponding lines [6].

Research method. Instead of representing the range of stresses as function o, ,

sometimes o, and o, are drawn in function o, (Fig. 4) and are computed from

min

equation o, =0, +R/2, o, =0, —R/2 and plotted by adding + R/2 to the ordinates
of the AOB line sloping at an angle of 45°.
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Fig. 4. Simplified diagram of ultimate stresses

The vertical line passing through point D corresponds to a tensile stress of the
symmetric cycle.

Point A represents the ultimate tensile strength of a material and point B — the
ultimate compression strength. The curves o, and o, represent the limiting states for

fluctuating stresses. If the points corresponding to some real fluctuating stresses lie within
AEBDA, the material will withstand that stress in an infinite number of cycles without
failure. The curves o,,,, and o,;, have been obtained from the parabolic curve (Fig. 2),
however the parabolas in many cases are substituted by two sloping lines and the safety
region shown in Fig. 3 is obtained in the form of the parallelogram AFBCA.

Many researchers find that the range of stresses depends not only on the magnitude
but also the sense of the average stress o,,. The ultimate compressive strength often

differs from the ultimate tensile strength. For instance, for a number of materials the
ultimate compressive strength (especially for brittle materials) is considerably more than
the ultimate tensile strength. For composite materials, on the contrary, the ultimate
compressive strength is almost 50 per cent lower than the ultimate tensile strength. Then,
instead of symmetric parabolas (Fig. 2), we get asymmetric curves [7]. It is readily seen

min
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that such approaches of considering the asymmetry of cyclic stresses to define the ultimate
strength in fluctuating stresses is rather complicated and the accuracy is arguable.
For a more simplified solution of the problem, it is assumed that the variation of
the working load up to the ultimate state between the components of stress cycles o,
and o,
Then the endurance limit for the given asymmetry coefficient r is written as:
O,

o, =0,+0,, F=O_—mm- 1)

remains constant (o, / o,;, = constant).

min —

max

Fig. 4 shows a simplified diagram drawn by static strength ( o,,07 ) and
endurance limit o_, .
According to the graph shown in Fig. 4 we have:

tgﬂzﬁzo-max_o-minzl_r. (2)
Opn  Omax tOmin  1+T
From Egs. (1) and (2) we have:
2
GrZO'm'f'Ua:Umm- (3)
Equation of the AC line can be represented in the following form:
Ga  Om_1 )
o, Oy
Taking into account Egs. (3) and (4) we get:
o > 20, - Oy, (5)

o O'b(l— r)+ (1+ r)o:l ’
which means that it is sufficient to know the limit of static strength &, (o ) and endurance
limit o_, to determine the ultimate fatigue stress for any asymmetric cycle (Fig. 5).
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Fig. 5. Fatigue strength for the given asymmetry of the cycle

44



For evaluating the strength of machine parts and specimens, the value of endurance
limits obtained by tests results needs to be corrected in view of a number of known
strength factors (forms and absolute dimensions, state of a specimen surface, properties
of surface layer, existing various concentrators changing patterns of loading etc.) [8].

Practically, it is very important to know how quickly the curve o — N tends to an
asymptote since the number of cycles necessary for setting up the endurance limit
characterizes the life-span of a machine part. Experiments show that for ferrous metals
the endurance limit can be set up with adequate accuracy on the basis of o, =10

millions cycles. For non-ferrous metals (for example, aluminum), there is no certain
endurance limit, and ordinates of fatigue curve o —N decreases infinitely as the
number of cycles rises. Determining the endurance limits for any material requires a
great number of experiments. Therefore, the practical interest is in setting up a
relationship between endurance limits and other mechanical properties which can be
defined theoretically and by static tests. Although a great number of experimental data
have been gathered it is still impossible to set up such a relationship [9]. In our
opinion, it is exceedingly difficult, by summing up fatigue damages and microcracks,
to implement the idea of the theoretically established functional relationship between
the stress increases depending on the number of loading cycles. Expressions of
integral sum of damages include initial magnitudes of microcracks and microflaws,
which can be defined by correlation analysis of examination results of the test
specimen. When it is considered that destruction most often occurs not where there is a
large microcrack but in an absolutely other place and that the study of microcracks is not
an easy work, then the significance of the present approach seems fantastic and
ineffective, at times even meaningless. Therefore we consider the deformation process
of a structure or a machine part not as pure elastic but as elasto-plastic. To describe an
elasto-plastic deformation, a form of recording is used which frequently is applied in
electrical engineering for defining the phase lag between voltage and current strength [10].
Then for the elasto-plastic deformation at uniaxial tension-compression, we get [11, 12]:
o=E-¢-¢e?, (6)
where ¢ and o are elastic deformation and stress, respectively, a is some constant
which depends on the material property, the nature of deformation and the type of the
stressed state, « at the same time is a small quantity (« <<1). Eq. (6) can be written
in the following form [13]:
oc=E-s(l+a), (7

and since « <<1, then expanding e“ in Fourier series and neglecting small quantities,
we get Eq. (7), where a-¢ is a residual plastic deformation after one stress change
cycle. In multiple repeating of stress cycles, the plastic deformation will increase

45



causing a change in the stiffness test specimen. If the initial tension or compression
stiffness of the part or specimen under consideration were C,, then after a certain
number of stress alteration cycles the stiffness would decrease to the value C, —C,,
where

Cy=a-C,-n. (8)

Since the plastic deformation increases by exponential law (gn = g-e“), then the
specimen stiffness also decreases by exponential law, where n is the number of cycles
in IgN parts, thatis n=Ig N or n=10".

Then the stiffness of the test specimen, after load cyclic action, can be expressed
as Co(l—a~lg N). If the test specimen or a machine part is considered as an
oscillation system with an exciting varying force P(t)z P-sinat, where o is the
angular frequency of oscillation (w=27z-f, f=H/t), then uniaxial oscillatory
motion of the specimen can be described by a differential equation of varying
coefficient [13]:

y+&(1—a-lgN)y=Bsina)t, 9)
m m

where y is the amplitude of oscillation, C, is the initial stiffness of the specimen, m

is the unit volume mass of the specimen, P is the maximum load.

Research results. Eq. (9) is Mathieu-Hill’s equation type with variable
coefficient depending on time and the number of cycles. This equation has no analytic
solution and can be solved by numerical methods only.

However, when the load is changed with frequency less than 20 Hz, inertia forces
can be neglected, we get:

&(l—a-lgN)yzi-sina}t, (10)
m m

where y =y, Sinot, then:
CO(l_a'Ig N)ymax =P. (11)

Assuming that C, = srﬂ where P, is the maximum force which at the initial

max
max

section F, of the specimen can cause a stress equal to o, or o;,0,, where o; isa
pressure limit in static loading, we have:

Puaxl—c-lgN)=P. (12)
Dividing both sides by F,, we have:
o,(1-a-lgN)=0, (13)
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or
c+a-o,-1lgN =0, (14)
To determine coefficient o, the specimen is assumed to be a prismatic bar which
measures ¢, in height, b, in width, and I, in initial length. Then the following can
be written:
1dz, odb_ 1 dz .

a da
_ S L Y 15
o o R ] (15)

a (LY b (1 ab (LY F (1)
= = (ﬁ} = (_Oj/u; — - = (ij T —= (_Oj , (16)
oy I by I o, - b, | F I

where g is the Poisson's ratio, F, is the initial cross-section area of the specimen, F

is the cross-section area of the specimen after the first cycle of deformation.
The difference between the initial and final cross-sections areas is:

2u
AF=F —-F or AF=F0|:1—(ITOJ } (17)
Since (as follows from ¢ =¢, +¢&,=¢,+a-¢,),
where
g=21; gy:g; o*lzi; azi. (18)
E E F F

From Egs. (16), (17), and (18) we have:

a:(LJﬂ_l. (19)
IO

Having in view that | =1, + 4 and IA: gy = % , We get:
0
E+o)
a= -1. 20
(27 20
Then Eq. (14) can be written in the following form:
c+mlgN =g, (21)
where
2u
m, = o, (M) 1], k=%, (22)
k-E o

Conclusions. On the basis of the studies carried out and the experience of
worldwide practice, for the first time, a formula is derived for calculating the ultimate
stresses for any asymmetric cycle of stress alteration at known endurance limit in
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symmetric cycle. At a closer examination of the cyclic deformation process, and
taking into account the plastic component differential equation for uniaxial oscillation
of an object with variable coefficients of Mathieu-Hill-type and based on it, the
equation of endurance curve has been derived where the mechanical characteristic of
materials and the stress parameters have been taken into consideration.
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K BOITPOCY OB YCTAJIOCTHOM MPOYHOCTU AHU3OTPOITHBIX
MATEPHUAJIOB

I'.I'. eksn, H.I'. OBymsiH

PaccMoTpeHa BHIHOCIMBOCTh MaTepUaa IPU NEPEMEHHBIX HUKINYECKUX HArpyKEHUSIX C
pa3IMYHBIMK AMaNa3oHaMH HW3MEHeHHs HanpspkeHni. [lomydeHa rpaduueckas 3aBUCHMOCTD
CPEIHEr0 HAIpPSsDKEHUs LMKIA OT JMala3oHa W3MEHEHUs HanpspkeHuid. U3 ynpoiieHHo#
JUarpaMMBbl TIpefeTbHBIX HANpPsDKEHHHM ModydeHa ¢opMyna pacdeTa Ipejena YCTaJOCTHOMH
MPOYHOCTH JJIsl JIIOOOTO0 acMMMETpHUYecKoro nukia. PaccmarpuBas nedopmupoBaHHE Kak
YIPYTOIJIaCTHYECKHH TIpoliece, ToiydeHo auddepeHnnansHoe ypaBHEHHE OJHOOCHOTO
KoniebaHusi o0beKTa ¢ mepeMeHHbIMH KO3 ¢uumenrtamu thna Martbe—Xmwna. {1 manbix
4acTOT U3MEHEHNUs HANPSHKEHUH MTOJy4eHO YpaBHEHHE KPUBOW BBIHOCIHBOCTH.

Knrwueevie cnosa: ycranocTHas NPOYHOCTb, MPENEN BBIHOCIMBOCTH, HAIpsKEHUE,
Jnedopmanus, UK, KoJieOaHue.
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